R- Programming --> Out put PDF file and a screen shot on computer with R program opened date/time of screen should be visible - Computer Science
Write a fully executed R-Markdown program and submit a pdf file solving and answering questions listed below under Problems at the end of chapter 13. For clarity, make sure to give an appropriate title to each section.
13.1 a and b.
13.2 c and d.
Mandatory:
1. Please provide me a PDF file after execution
2. screenshot of the computer with R program opened. when executed
Please find the attached textbook and reference 13.1 and 13.2
DATA MINING
FOR BUSINESS ANALYTICS
DATA MINING
FOR BUSINESS ANALYTICS
Concepts, Techniques, and Applications in R
Galit Shmueli
Peter C. Bruce
Inbal Yahav
Nitin R. Patel
Kenneth C. Lichtendahl, Jr.
This edition first published 2018
© 2018 John Wiley & Sons, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by
law. Advice on how to obtain permission to reuse material from this title is available at
http://www.wiley.com/go/permissions.
The right of Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, and Kenneth C. Lichtendahl Jr. to be
identified as the authors of this work has been asserted in accordance with law.
Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
Editorial Office
111 River Street, Hoboken, NJ 07030, USA
For details of our global editorial offices, customer services, and more information about Wiley products visit us at
www.wiley.com.
Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.
Limit of Liability/Disclaimer of Warranty
The publisher and the authors make no representations or warranties with respect to the accuracy or completeness
of the contents of this work and specifically disclaim all warranties; including without limitation any implied
warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not
engaged in rendering professional services. The advice and strategies contained herein may not be suitable for
every situation. In view of on-going research, equipment modifications, changes in governmental regulations, and
the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader
is urged to review and evaluate the information provided in the package insert or instructions for each chemical,
piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of
usage and for added warnings and precautions. The fact that an organization or website is referred to in this work
as a citation and/or potential source of further information does not mean that the author or the publisher
endorses the information the organization or website may provide or recommendations it may make. Further,
readers should be aware that websites listed in this work may have changed or disappeared between when this
works was written and when it is read. No warranty may be created or extended by any promotional statements
for this work. Neither the publisher nor the author shall be liable for any damages arising here from.
Library of Congress Cataloging-in-Publication Data applied for
Hardback: 9781118879368
Cover Design: Wiley
Cover Image: © Achim Mittler, Frankfurt am Main/Gettyimages
Set in 11.5/14.5pt BemboStd by Aptara Inc., New Delhi, India
Printed in the United States of America.
10 9 8 7 6 5 4 3 2 1
http://www.wiley.com/go/permissions
http://www.wiley.com
The beginning of wisdom is this:
Get wisdom, and whatever else you get, get insight.
– Proverbs 4:7
Contents
Foreword by Gareth James xix
Foreword by Ravi Bapna xxi
Preface to the R Edition xxiii
Acknowledgments xxvii
PART I PRELIMINARIES
CHAPTER 1 Introduction 3
1.1 What Is Business Analytics? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 What Is Data Mining? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Data Mining and Related Terms . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Why Are There So Many Different Methods? . . . . . . . . . . . . . . . . . . . 8
1.7 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Road Maps to This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Order of Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
CHAPTER 2 Overview of the Data Mining Process 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Core Ideas in Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Association Rules and Recommendation Systems . . . . . . . . . . . . . . . . . 16
Predictive Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Data Reduction and Dimension Reduction . . . . . . . . . . . . . . . . . . . . 17
Data Exploration and Visualization . . . . . . . . . . . . . . . . . . . . . . . . 17
Supervised and Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The Steps in Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Preliminary Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Organization of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Predicting Home Values in the West Roxbury Neighborhood . . . . . . . . . . . 21
vii
viii CONTENTS
Loading and Looking at the Data in R . . . . . . . . . . . . . . . . . . . . . . 22
Sampling from a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Oversampling Rare Events in Classification Tasks . . . . . . . . . . . . . . . . . 25
Preprocessing and Cleaning the Data . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Predictive Power and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 33
Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Creation and Use of Data Partitions . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Building a Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Modeling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Using R for Data Mining on a Local Machine . . . . . . . . . . . . . . . . . . . 43
2.8 Automating Data Mining Solutions . . . . . . . . . . . . . . . . . . . . . . . . 43
Data Mining Software: The State of the Market (by Herb Edelstein) . . . . . . . . 45
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PART II DATA EXPLORATION AND DIMENSION REDUCTION
CHAPTER 3 Data Visualization 55
3.1 Uses of Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Base R or ggplot? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Example 1: Boston Housing Data . . . . . . . . . . . . . . . . . . . . . . . . 57
Example 2: Ridership on Amtrak Trains . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots . . . . . . . . . . . . . 59
Distribution Plots: Boxplots and Histograms . . . . . . . . . . . . . . . . . . . 61
Heatmaps: Visualizing Correlations and Missing Values . . . . . . . . . . . . . . 64
3.4 Multidimensional Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Adding Variables: Color, Size, Shape, Multiple Panels, and Animation . . . . . . . 67
Manipulations: Rescaling, Aggregation and Hierarchies, Zooming, Filtering . . . . 70
Reference: Trend Lines and Labels . . . . . . . . . . . . . . . . . . . . . . . . 74
Scaling up to Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Multivariate Plot: Parallel Coordinates Plot . . . . . . . . . . . . . . . . . . . . 75
Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Specialized Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Visualizing Networked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Visualizing Hierarchical Data: Treemaps . . . . . . . . . . . . . . . . . . . . . 82
Visualizing Geographical Data: Map Charts . . . . . . . . . . . . . . . . . . . . 83
3.6 Summary: Major Visualizations and Operations, by Data Mining Goal . . . . . . . 86
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
CHAPTER 4 Dimension Reduction 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
CONTENTS ix
4.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Example 1: House Prices in Boston . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Aggregation and Pivot Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Reducing the Number of Categories in Categorical Variables . . . . . . . . . . . 99
4.7 Converting a Categorical Variable to a Numerical Variable . . . . . . . . . . . . 99
4.8 Principal Components Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Example 2: Breakfast Cereals . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Principal Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Normalizing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Using Principal Components for Classification and Prediction . . . . . . . . . . . 109
4.9 Dimension Reduction Using Regression Models . . . . . . . . . . . . . . . . . . 111
4.10 Dimension Reduction Using Classification and Regression Trees . . . . . . . . . . 111
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
PART III PERFORMANCE EVALUATION
CHAPTER 5 Evaluating Predictive Performance 117
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Evaluating Predictive Performance . . . . . . . . . . . . . . . . . . . . . . . . 118
Naive Benchmark: The Average . . . . . . . . . . . . . . . . . . . . . . . . . 118
Prediction Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Comparing Training and Validation Performance . . . . . . . . . . . . . . . . . 121
Lift Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Judging Classifier Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Benchmark: The Naive Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Class Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
The Confusion (Classification) Matrix . . . . . . . . . . . . . . . . . . . . . . . 124
Using the Validation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Propensities and Cutoff for Classification . . . . . . . . . . . . . . . . . . . . . 127
Performance in Case of Unequal Importance of Classes . . . . . . . . . . . . . . 131
Asymmetric Misclassification Costs . . . . . . . . . . . . . . . . . . . . . . . . 133
Generalization to More Than Two Classes . . . . . . . . . . . . . . . . . . . . . 135
5.4 Judging Ranking Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Lift Charts for Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Decile Lift Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Beyond Two Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Lift Charts Incorporating Costs and Benefits . . . . . . . . . . . . . . . . . . . 139
Lift as a Function of Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Oversampling the Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . 144
x CONTENTS
Evaluating Model Performance Using a Non-oversampled Validation Set . . . . . . 144
Evaluating Model Performance if Only Oversampled Validation Set Exists . . . . . 144
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
PART IV PREDICTION AND CLASSIFICATION METHODS
CHAPTER 6 Multiple Linear Regression 153
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Explanatory vs. Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 Estimating the Regression Equation and Prediction . . . . . . . . . . . . . . . . 156
Example: Predicting the Price of Used Toyota Corolla Cars . . . . . . . . . . . . 156
6.4 Variable Selection in Linear Regression . . . . . . . . . . . . . . . . . . . . . 161
Reducing the Number of Predictors . . . . . . . . . . . . . . . . . . . . . . . 161
How to Reduce the Number of Predictors . . . . . . . . . . . . . . . . . . . . . 162
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
CHAPTER 7 k-Nearest Neighbors (kNN) 173
7.1 The k-NN Classifier (Categorical Outcome) . . . . . . . . . . . . . . . . . . . . 173
Determining Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Example: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Choosing k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Setting the Cutoff Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
k-NN with More Than Two Classes . . . . . . . . . . . . . . . . . . . . . . . . 180
Converting Categorical Variables to Binary Dummies . . . . . . . . . . . . . . . 180
7.2 k-NN for a Numerical Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 Advantages and Shortcomings of k-NN Algorithms . . . . . . . . . . . . . . . . 182
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
CHAPTER 8 The Naive Bayes Classifier 187
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Cutoff Probability Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Example 1: Predicting Fraudulent Financial Reporting . . . . . . . . . . . . . . 188
8.2 Applying the Full (Exact) Bayesian Classifier . . . . . . . . . . . . . . . . . . . 189
Using the “Assign to the Most Probable Class” Method . . . . . . . . . . . . . . 190
Using the Cutoff Probability Method . . . . . . . . . . . . . . . . . . . . . . . 190
Practical Difficulty with the Complete (Exact) Bayes Procedure . . . . . . . . . . 190
Solution: Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
The Naive Bayes Assumption of Conditional Independence . . . . . . . . . . . . 192
Using the Cutoff Probability Method . . . . . . . . . . . . . . . . . . . . . . . 192
Example 2: Predicting Fraudulent Financial Reports, Two Predictors . . . . . . . 193
Example 3: Predicting Delayed Flights . . . . . . . . . . . . . . . . . . . . . . 194
8.3 Advantages and Shortcomings of the Naive Bayes Classifier . . . . . . . . . . . 199
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
CONTENTS xi
CHAPTER 9 Classification and Regression Trees 205
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.2 Classification Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Example 1: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Measures of Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Classifying a New Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.3 Evaluating the Performance of a Classification Tree . . . . . . . . . . . . . . . . 215
Example 2: Acceptance of Personal Loan . . . . . . . . . . . . . . . . . . . . . 215
9.4 Avoiding Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Stopping Tree Growth: Conditional Inference Trees . . . . . . . . . . . . . . . . 221
Pruning the Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Best-Pruned Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.5 Classification Rules from Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6 Classification Trees for More Than Two Classes . . . . . . . . . . . . . . . . . . 227
9.7 Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Measuring Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Evaluating Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.8 Improving Prediction: Random Forests and Boosted Trees . . . . . . . . . . . . 229
Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Boosted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.9 Advantages and Weaknesses of a Tree . . . . . . . . . . . . . . . . . . . . . . 232
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
CHAPTER 10 Logistic Regression 237
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.2 The Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.3 Example: Acceptance of Personal Loan . . . . . . . . . . . . . . . . . . . . . . 240
Model with a Single Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Estimating the Logistic Model from Data: Computing Parameter Estimates . . . . 243
Interpreting Results in Terms of Odds (for a Profiling Goal) . . . . . . . . . . . . 244
10.4 Evaluating Classification Performance . . . . . . . . . . . . . . . . . . . . . . 247
Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.5 Example of Complete Analysis: Predicting Delayed Flights . . . . . . . . . . . . 250
Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Model-Fitting and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.6 Appendix: Logistic Regression for Profiling . . . . . . . . . . . . . . . . . . . . 259
Appendix A: Why Linear Regression Is Problematic for a Categorical Outcome . . . 259
xii CONTENTS
Appendix B: Evaluating Explanatory Power . . . . . . . . . . . . . . . . . . . . 261
Appendix C: Logistic Regression for More Than Two Classes . . . . . . . . . . . . 264
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
CHAPTER 11 Neural Nets 271
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.2 Concept and Structure of a Neural Network . . . . . . . . . . . . . . . . . . . . 272
11.3 Fitting a Network to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Example 1: Tiny Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Computing Output of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Training the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Example 2: Classifying Accident Severity . . . . . . . . . . . . . . . . . . . . . 282
Avoiding Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Using the Output for Prediction and Classification . . . . . . . . . . . . . . . . 283
11.4 Required User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.5 Exploring the Relationship Between Predictors and Outcome . . . . . . . . . . . 287
11.6 Advantages and Weaknesses of Neural Networks . . . . . . . . . . . . . . . . . 288
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
CHAPTER 12 Discriminant Analysis 293
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Example 1: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Example 2: Personal Loan Acceptance . . . . . . . . . . . . . . . . . . . . . . 294
12.2 Distance of a Record from a Class . . . . . . . . . . . . . . . . . . . . . . . . 296
12.3 Fisher’s Linear Classification Functions . . . . . . . . . . . . . . . . . . . . . . 297
12.4 Classification Performance of Discriminant Analysis . . . . . . . . . . . . . . . 300
12.5 Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.6 Unequal Misclassification Costs . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.7 Classifying More Than Two Classes . . . . . . . . . . . . . . . . . . . . . . . . 303
Example 3: Medical Dispatch to Accident Scenes . . . . . . . . . . . . . . . . . 303
12.8 Advantages and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
CHAPTER 13 Combining Methods: Ensembles and Uplift Modeling 311
13.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Why Ensembles Can Improve Predictive Power . . . . . . . . . . . . . . . . . . 312
Simple Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Bagging and Boosting in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Advantages and Weaknesses of Ensembles . . . . . . . . . . . . . . . . . . . . 315
13.2 Uplift (Persuasion) Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
A-B Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
CONTENTS xiii
Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Gathering the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
A Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Modeling Individual Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Computing Uplift with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Using the Results of an Uplift Model . . . . . . . . . . . . . . . . . . . . . . . 322
13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
PART V MINING RELATIONSHIPS AMONG RECORDS
CHAPTER 14 Association Rules and Collaborative Filtering 329
14.1 Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Discovering Association Rules in Transaction Databases . . . . . . . . . . . . . 330
Example 1: Synthetic Data on Purchases of Phone Faceplates . . . . . . . . . . 330
Generating Candidate Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
The Apriori Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Selecting Strong Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
The Process of Rule Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Rules and Chance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Example 2: Rules for Similar Book Purchases . . . . . . . . . . . . . . . . . . . 340
14.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Data Type and Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Example 3: Netflix Prize Contest . . . . . . . . . . . . . . . . . . . . . . . . . 343
User-Based Collaborative Filtering: “People Like You” . . . . . . . . . . . . . . 344
Item-Based Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . 347
Advantages and Weaknesses of Collaborative Filtering . . . . . . . . . . . . . . 348
Collaborative Filtering vs. Association Rules . . . . . . . . . . . . . . . . . . . 349
14.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
CHAPTER 15 Cluster Analysis 357
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Example: Public Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
15.2 Measuring Distance Between Two Records . . . . . . . . . . . . . . . . . . . . 361
Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Normalizing Numerical Measurements . . . . . . . . . . . . . . . . . . . . . . 362
Other Distance Measures for Numerical Data . . . . . . . . . . . . . . . . . . . 362
Distance Measures for Categorical Data . . . . . . . . . . . . . . . . . . . . . . 365
Distance Measures for Mixed Data . . . . . . . . . . . . . . . . . . . . . . . . 366
15.3 Measuring Distance Between Two Clusters . . . . . . . . . . . . . . . . . . . . 366
Minimum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Maximum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
xiv CONTENTS
Average Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Centroid Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
15.4 Hierarchical (Agglomerative) Clustering . . . . . . . . . . . . . . . . . . . . . 368
Single Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Complete Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Average Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Centroid Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Ward’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Dendrograms: Displaying Clustering Process and Results . . . . . . . . . . . . . 371
Validating Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Limitations of Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 375
15.5 Non-Hierarchical Clustering: The k-Means Algorithm . . . . . . . . . . . . . . . 376
Choosing the Number of Clusters (k) . . . . . . . . . . . . . . . . . . . . . . . 377
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
PART VI FORECASTING TIME SERIES
CHAPTER 16 Handling Time Series 387
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
16.2 Descriptive vs. Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . 389
16.3 Popular Forecasting Methods in Business . . . . . . . . . . . . . . . . . . . . . 389
Combining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
16.4 Time Series Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Example: Ridership on Amtrak Trains . . . . . . . . . . . . . . . . . . . . . . . 390
16.5 Data-Partitioning and Performance Evaluation . . . . . . . . . . . . . . . . . . 395
Benchmark Performance: Naive Forecasts . . . . . . . . . . . . . . . . . . . . 395
Generating Future Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
CHAPTER 17 Regression-Based Forecasting 401
17.1 A Model with Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Linear Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Exponential Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Polynomial Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
17.2 A Model with Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
17.3 A Model with Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . 411
17.4 Autocorrelation and ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . . 412
Computing Autocorrelation . . . . . . . . . . . . . . . . . …
CATEGORIES
Economics
Nursing
Applied Sciences
Psychology
Science
Management
Computer Science
Human Resource Management
Accounting
Information Systems
English
Anatomy
Operations Management
Sociology
Literature
Education
Business & Finance
Marketing
Engineering
Statistics
Biology
Political Science
Reading
History
Financial markets
Philosophy
Mathematics
Law
Criminal
Architecture and Design
Government
Social Science
World history
Chemistry
Humanities
Business Finance
Writing
Programming
Telecommunications Engineering
Geography
Physics
Spanish
ach
e. Embedded Entrepreneurship
f. Three Social Entrepreneurship Models
g. Social-Founder Identity
h. Micros-enterprise Development
Outcomes
Subset 2. Indigenous Entrepreneurship Approaches (Outside of Canada)
a. Indigenous Australian Entrepreneurs Exami
Calculus
(people influence of
others) processes that you perceived occurs in this specific Institution Select one of the forms of stratification highlighted (focus on inter the intersectionalities
of these three) to reflect and analyze the potential ways these (
American history
Pharmacology
Ancient history
. Also
Numerical analysis
Environmental science
Electrical Engineering
Precalculus
Physiology
Civil Engineering
Electronic Engineering
ness Horizons
Algebra
Geology
Physical chemistry
nt
When considering both O
lassrooms
Civil
Probability
ions
Identify a specific consumer product that you or your family have used for quite some time. This might be a branded smartphone (if you have used several versions over the years)
or the court to consider in its deliberations. Locard’s exchange principle argues that during the commission of a crime
Chemical Engineering
Ecology
aragraphs (meaning 25 sentences or more). Your assignment may be more than 5 paragraphs but not less.
INSTRUCTIONS:
To access the FNU Online Library for journals and articles you can go the FNU library link here:
https://www.fnu.edu/library/
In order to
n that draws upon the theoretical reading to explain and contextualize the design choices. Be sure to directly quote or paraphrase the reading
ce to the vaccine. Your campaign must educate and inform the audience on the benefits but also create for safe and open dialogue. A key metric of your campaign will be the direct increase in numbers.
Key outcomes: The approach that you take must be clear
Mechanical Engineering
Organic chemistry
Geometry
nment
Topic
You will need to pick one topic for your project (5 pts)
Literature search
You will need to perform a literature search for your topic
Geophysics
you been involved with a company doing a redesign of business processes
Communication on Customer Relations. Discuss how two-way communication on social media channels impacts businesses both positively and negatively. Provide any personal examples from your experience
od pressure and hypertension via a community-wide intervention that targets the problem across the lifespan (i.e. includes all ages).
Develop a community-wide intervention to reduce elevated blood pressure and hypertension in the State of Alabama that in
in body of the report
Conclusions
References (8 References Minimum)
*** Words count = 2000 words.
*** In-Text Citations and References using Harvard style.
*** In Task section I’ve chose (Economic issues in overseas contracting)"
Electromagnetism
w or quality improvement; it was just all part of good nursing care. The goal for quality improvement is to monitor patient outcomes using statistics for comparison to standards of care for different diseases
e a 1 to 2 slide Microsoft PowerPoint presentation on the different models of case management. Include speaker notes... .....Describe three different models of case management.
visual representations of information. They can include numbers
SSAY
ame workbook for all 3 milestones. You do not need to download a new copy for Milestones 2 or 3. When you submit Milestone 3
pages):
Provide a description of an existing intervention in Canada
making the appropriate buying decisions in an ethical and professional manner.
Topic: Purchasing and Technology
You read about blockchain ledger technology. Now do some additional research out on the Internet and share your URL with the rest of the class
be aware of which features their competitors are opting to include so the product development teams can design similar or enhanced features to attract more of the market. The more unique
low (The Top Health Industry Trends to Watch in 2015) to assist you with this discussion.
https://youtu.be/fRym_jyuBc0
Next year the $2.8 trillion U.S. healthcare industry will finally begin to look and feel more like the rest of the business wo
evidence-based primary care curriculum. Throughout your nurse practitioner program
Vignette
Understanding Gender Fluidity
Providing Inclusive Quality Care
Affirming Clinical Encounters
Conclusion
References
Nurse Practitioner Knowledge
Mechanics
and word limit is unit as a guide only.
The assessment may be re-attempted on two further occasions (maximum three attempts in total). All assessments must be resubmitted 3 days within receiving your unsatisfactory grade. You must clearly indicate “Re-su
Trigonometry
Article writing
Other
5. June 29
After the components sending to the manufacturing house
1. In 1972 the Furman v. Georgia case resulted in a decision that would put action into motion. Furman was originally sentenced to death because of a murder he committed in Georgia but the court debated whether or not this was a violation of his 8th amend
One of the first conflicts that would need to be investigated would be whether the human service professional followed the responsibility to client ethical standard. While developing a relationship with client it is important to clarify that if danger or
Ethical behavior is a critical topic in the workplace because the impact of it can make or break a business
No matter which type of health care organization
With a direct sale
During the pandemic
Computers are being used to monitor the spread of outbreaks in different areas of the world and with this record
3. Furman v. Georgia is a U.S Supreme Court case that resolves around the Eighth Amendments ban on cruel and unsual punishment in death penalty cases. The Furman v. Georgia case was based on Furman being convicted of murder in Georgia. Furman was caught i
One major ethical conflict that may arise in my investigation is the Responsibility to Client in both Standard 3 and Standard 4 of the Ethical Standards for Human Service Professionals (2015). Making sure we do not disclose information without consent ev
4. Identify two examples of real world problems that you have observed in your personal
Summary & Evaluation: Reference & 188. Academic Search Ultimate
Ethics
We can mention at least one example of how the violation of ethical standards can be prevented. Many organizations promote ethical self-regulation by creating moral codes to help direct their business activities
*DDB is used for the first three years
For example
The inbound logistics for William Instrument refer to purchase components from various electronic firms. During the purchase process William need to consider the quality and price of the components. In this case
4. A U.S. Supreme Court case known as Furman v. Georgia (1972) is a landmark case that involved Eighth Amendment’s ban of unusual and cruel punishment in death penalty cases (Furman v. Georgia (1972)
With covid coming into place
In my opinion
with
Not necessarily all home buyers are the same! When you choose to work with we buy ugly houses Baltimore & nationwide USA
The ability to view ourselves from an unbiased perspective allows us to critically assess our personal strengths and weaknesses. This is an important step in the process of finding the right resources for our personal learning style. Ego and pride can be
· By Day 1 of this week
While you must form your answers to the questions below from our assigned reading material
CliftonLarsonAllen LLP (2013)
5 The family dynamic is awkward at first since the most outgoing and straight forward person in the family in Linda
Urien
The most important benefit of my statistical analysis would be the accuracy with which I interpret the data. The greatest obstacle
From a similar but larger point of view
4 In order to get the entire family to come back for another session I would suggest coming in on a day the restaurant is not open
When seeking to identify a patient’s health condition
After viewing the you tube videos on prayer
Your paper must be at least two pages in length (not counting the title and reference pages)
The word assimilate is negative to me. I believe everyone should learn about a country that they are going to live in. It doesnt mean that they have to believe that everything in America is better than where they came from. It means that they care enough
Data collection
Single Subject Chris is a social worker in a geriatric case management program located in a midsize Northeastern town. She has an MSW and is part of a team of case managers that likes to continuously improve on its practice. The team is currently using an
I would start off with Linda on repeating her options for the child and going over what she is feeling with each option. I would want to find out what she is afraid of. I would avoid asking her any “why” questions because I want her to be in the here an
Summarize the advantages and disadvantages of using an Internet site as means of collecting data for psychological research (Comp 2.1) 25.0\% Summarization of the advantages and disadvantages of using an Internet site as means of collecting data for psych
Identify the type of research used in a chosen study
Compose a 1
Optics
effect relationship becomes more difficult—as the researcher cannot enact total control of another person even in an experimental environment. Social workers serve clients in highly complex real-world environments. Clients often implement recommended inte
I think knowing more about you will allow you to be able to choose the right resources
Be 4 pages in length
soft MB-920 dumps review and documentation and high-quality listing pdf MB-920 braindumps also recommended and approved by Microsoft experts. The practical test
g
One thing you will need to do in college is learn how to find and use references. References support your ideas. College-level work must be supported by research. You are expected to do that for this paper. You will research
Elaborate on any potential confounds or ethical concerns while participating in the psychological study 20.0\% Elaboration on any potential confounds or ethical concerns while participating in the psychological study is missing. Elaboration on any potenti
3 The first thing I would do in the family’s first session is develop a genogram of the family to get an idea of all the individuals who play a major role in Linda’s life. After establishing where each member is in relation to the family
A Health in All Policies approach
Note: The requirements outlined below correspond to the grading criteria in the scoring guide. At a minimum
Chen
Read Connecting Communities and Complexity: A Case Study in Creating the Conditions for Transformational Change
Read Reflections on Cultural Humility
Read A Basic Guide to ABCD Community Organizing
Use the bolded black section and sub-section titles below to organize your paper. For each section
Losinski forwarded the article on a priority basis to Mary Scott
Losinksi wanted details on use of the ED at CGH. He asked the administrative resident