R- Programming --> Out put PDF file and a screen shot on computer with R program opened date/time of screen should be visible - Computer Science
Write a fully executed R-Markdown program and submit a pdf file solving and answering questions listed below under Problems at the end of chapter 13. For clarity, make sure to give an appropriate title to each section. 13.1 a and b. 13.2 c and d. Mandatory: 1. Please provide me a PDF file after execution 2.  screenshot of the computer with R program opened. when executed Please find the attached textbook and reference 13.1  and 13.2 DATA MINING FOR BUSINESS ANALYTICS DATA MINING FOR BUSINESS ANALYTICS Concepts, Techniques, and Applications in R Galit Shmueli Peter C. Bruce Inbal Yahav Nitin R. Patel Kenneth C. Lichtendahl, Jr. This edition first published 2018 © 2018 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, and Kenneth C. Lichtendahl Jr. to be identified as the authors of this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA Editorial Office 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties; including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of on-going research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising here from. Library of Congress Cataloging-in-Publication Data applied for Hardback: 9781118879368 Cover Design: Wiley Cover Image: © Achim Mittler, Frankfurt am Main/Gettyimages Set in 11.5/14.5pt BemboStd by Aptara Inc., New Delhi, India Printed in the United States of America. 10 9 8 7 6 5 4 3 2 1 http://www.wiley.com/go/permissions http://www.wiley.com The beginning of wisdom is this: Get wisdom, and whatever else you get, get insight. – Proverbs 4:7 Contents Foreword by Gareth James xix Foreword by Ravi Bapna xxi Preface to the R Edition xxiii Acknowledgments xxvii PART I PRELIMINARIES CHAPTER 1 Introduction 3 1.1 What Is Business Analytics? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 What Is Data Mining? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Data Mining and Related Terms . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Why Are There So Many Different Methods? . . . . . . . . . . . . . . . . . . . 8 1.7 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Road Maps to This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Order of Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 2 Overview of the Data Mining Process 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Core Ideas in Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Association Rules and Recommendation Systems . . . . . . . . . . . . . . . . . 16 Predictive Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Data Reduction and Dimension Reduction . . . . . . . . . . . . . . . . . . . . 17 Data Exploration and Visualization . . . . . . . . . . . . . . . . . . . . . . . . 17 Supervised and Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . 18 2.3 The Steps in Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Preliminary Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Organization of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Predicting Home Values in the West Roxbury Neighborhood . . . . . . . . . . . 21 vii viii CONTENTS Loading and Looking at the Data in R . . . . . . . . . . . . . . . . . . . . . . 22 Sampling from a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Oversampling Rare Events in Classification Tasks . . . . . . . . . . . . . . . . . 25 Preprocessing and Cleaning the Data . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Predictive Power and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 33 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Creation and Use of Data Partitions . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Building a Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Modeling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.7 Using R for Data Mining on a Local Machine . . . . . . . . . . . . . . . . . . . 43 2.8 Automating Data Mining Solutions . . . . . . . . . . . . . . . . . . . . . . . . 43 Data Mining Software: The State of the Market (by Herb Edelstein) . . . . . . . . 45 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 PART II DATA EXPLORATION AND DIMENSION REDUCTION CHAPTER 3 Data Visualization 55 3.1 Uses of Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Base R or ggplot? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Example 1: Boston Housing Data . . . . . . . . . . . . . . . . . . . . . . . . 57 Example 2: Ridership on Amtrak Trains . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots . . . . . . . . . . . . . 59 Distribution Plots: Boxplots and Histograms . . . . . . . . . . . . . . . . . . . 61 Heatmaps: Visualizing Correlations and Missing Values . . . . . . . . . . . . . . 64 3.4 Multidimensional Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Adding Variables: Color, Size, Shape, Multiple Panels, and Animation . . . . . . . 67 Manipulations: Rescaling, Aggregation and Hierarchies, Zooming, Filtering . . . . 70 Reference: Trend Lines and Labels . . . . . . . . . . . . . . . . . . . . . . . . 74 Scaling up to Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Multivariate Plot: Parallel Coordinates Plot . . . . . . . . . . . . . . . . . . . . 75 Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.5 Specialized Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Visualizing Networked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Visualizing Hierarchical Data: Treemaps . . . . . . . . . . . . . . . . . . . . . 82 Visualizing Geographical Data: Map Charts . . . . . . . . . . . . . . . . . . . . 83 3.6 Summary: Major Visualizations and Operations, by Data Mining Goal . . . . . . . 86 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 CHAPTER 4 Dimension Reduction 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 CONTENTS ix 4.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Example 1: House Prices in Boston . . . . . . . . . . . . . . . . . . . . . . . 93 4.4 Data Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Aggregation and Pivot Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.5 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Reducing the Number of Categories in Categorical Variables . . . . . . . . . . . 99 4.7 Converting a Categorical Variable to a Numerical Variable . . . . . . . . . . . . 99 4.8 Principal Components Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Example 2: Breakfast Cereals . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Principal Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Normalizing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Using Principal Components for Classification and Prediction . . . . . . . . . . . 109 4.9 Dimension Reduction Using Regression Models . . . . . . . . . . . . . . . . . . 111 4.10 Dimension Reduction Using Classification and Regression Trees . . . . . . . . . . 111 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 PART III PERFORMANCE EVALUATION CHAPTER 5 Evaluating Predictive Performance 117 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 Evaluating Predictive Performance . . . . . . . . . . . . . . . . . . . . . . . . 118 Naive Benchmark: The Average . . . . . . . . . . . . . . . . . . . . . . . . . 118 Prediction Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Comparing Training and Validation Performance . . . . . . . . . . . . . . . . . 121 Lift Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3 Judging Classifier Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Benchmark: The Naive Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Class Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 The Confusion (Classification) Matrix . . . . . . . . . . . . . . . . . . . . . . . 124 Using the Validation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Accuracy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Propensities and Cutoff for Classification . . . . . . . . . . . . . . . . . . . . . 127 Performance in Case of Unequal Importance of Classes . . . . . . . . . . . . . . 131 Asymmetric Misclassification Costs . . . . . . . . . . . . . . . . . . . . . . . . 133 Generalization to More Than Two Classes . . . . . . . . . . . . . . . . . . . . . 135 5.4 Judging Ranking Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Lift Charts for Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Decile Lift Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Beyond Two Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Lift Charts Incorporating Costs and Benefits . . . . . . . . . . . . . . . . . . . 139 Lift as a Function of Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.5 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Oversampling the Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . 144 x CONTENTS Evaluating Model Performance Using a Non-oversampled Validation Set . . . . . . 144 Evaluating Model Performance if Only Oversampled Validation Set Exists . . . . . 144 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 PART IV PREDICTION AND CLASSIFICATION METHODS CHAPTER 6 Multiple Linear Regression 153 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2 Explanatory vs. Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . 154 6.3 Estimating the Regression Equation and Prediction . . . . . . . . . . . . . . . . 156 Example: Predicting the Price of Used Toyota Corolla Cars . . . . . . . . . . . . 156 6.4 Variable Selection in Linear Regression . . . . . . . . . . . . . . . . . . . . . 161 Reducing the Number of Predictors . . . . . . . . . . . . . . . . . . . . . . . 161 How to Reduce the Number of Predictors . . . . . . . . . . . . . . . . . . . . . 162 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 CHAPTER 7 k-Nearest Neighbors (kNN) 173 7.1 The k-NN Classifier (Categorical Outcome) . . . . . . . . . . . . . . . . . . . . 173 Determining Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Classification Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Example: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Choosing k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Setting the Cutoff Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 k-NN with More Than Two Classes . . . . . . . . . . . . . . . . . . . . . . . . 180 Converting Categorical Variables to Binary Dummies . . . . . . . . . . . . . . . 180 7.2 k-NN for a Numerical Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.3 Advantages and Shortcomings of k-NN Algorithms . . . . . . . . . . . . . . . . 182 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 CHAPTER 8 The Naive Bayes Classifier 187 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Cutoff Probability Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Example 1: Predicting Fraudulent Financial Reporting . . . . . . . . . . . . . . 188 8.2 Applying the Full (Exact) Bayesian Classifier . . . . . . . . . . . . . . . . . . . 189 Using the “Assign to the Most Probable Class” Method . . . . . . . . . . . . . . 190 Using the Cutoff Probability Method . . . . . . . . . . . . . . . . . . . . . . . 190 Practical Difficulty with the Complete (Exact) Bayes Procedure . . . . . . . . . . 190 Solution: Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 The Naive Bayes Assumption of Conditional Independence . . . . . . . . . . . . 192 Using the Cutoff Probability Method . . . . . . . . . . . . . . . . . . . . . . . 192 Example 2: Predicting Fraudulent Financial Reports, Two Predictors . . . . . . . 193 Example 3: Predicting Delayed Flights . . . . . . . . . . . . . . . . . . . . . . 194 8.3 Advantages and Shortcomings of the Naive Bayes Classifier . . . . . . . . . . . 199 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 CONTENTS xi CHAPTER 9 Classification and Regression Trees 205 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9.2 Classification Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Example 1: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Measures of Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Classifying a New Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 9.3 Evaluating the Performance of a Classification Tree . . . . . . . . . . . . . . . . 215 Example 2: Acceptance of Personal Loan . . . . . . . . . . . . . . . . . . . . . 215 9.4 Avoiding Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Stopping Tree Growth: Conditional Inference Trees . . . . . . . . . . . . . . . . 221 Pruning the Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Best-Pruned Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 9.5 Classification Rules from Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.6 Classification Trees for More Than Two Classes . . . . . . . . . . . . . . . . . . 227 9.7 Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Measuring Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Evaluating Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9.8 Improving Prediction: Random Forests and Boosted Trees . . . . . . . . . . . . 229 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Boosted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.9 Advantages and Weaknesses of a Tree . . . . . . . . . . . . . . . . . . . . . . 232 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 CHAPTER 10 Logistic Regression 237 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.2 The Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . 239 10.3 Example: Acceptance of Personal Loan . . . . . . . . . . . . . . . . . . . . . . 240 Model with a Single Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Estimating the Logistic Model from Data: Computing Parameter Estimates . . . . 243 Interpreting Results in Terms of Odds (for a Profiling Goal) . . . . . . . . . . . . 244 10.4 Evaluating Classification Performance . . . . . . . . . . . . . . . . . . . . . . 247 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 10.5 Example of Complete Analysis: Predicting Delayed Flights . . . . . . . . . . . . 250 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Model-Fitting and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 10.6 Appendix: Logistic Regression for Profiling . . . . . . . . . . . . . . . . . . . . 259 Appendix A: Why Linear Regression Is Problematic for a Categorical Outcome . . . 259 xii CONTENTS Appendix B: Evaluating Explanatory Power . . . . . . . . . . . . . . . . . . . . 261 Appendix C: Logistic Regression for More Than Two Classes . . . . . . . . . . . . 264 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 CHAPTER 11 Neural Nets 271 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 11.2 Concept and Structure of a Neural Network . . . . . . . . . . . . . . . . . . . . 272 11.3 Fitting a Network to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Example 1: Tiny Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Computing Output of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Training the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Example 2: Classifying Accident Severity . . . . . . . . . . . . . . . . . . . . . 282 Avoiding Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Using the Output for Prediction and Classification . . . . . . . . . . . . . . . . 283 11.4 Required User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 11.5 Exploring the Relationship Between Predictors and Outcome . . . . . . . . . . . 287 11.6 Advantages and Weaknesses of Neural Networks . . . . . . . . . . . . . . . . . 288 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 CHAPTER 12 Discriminant Analysis 293 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Example 1: Riding Mowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Example 2: Personal Loan Acceptance . . . . . . . . . . . . . . . . . . . . . . 294 12.2 Distance of a Record from a Class . . . . . . . . . . . . . . . . . . . . . . . . 296 12.3 Fisher’s Linear Classification Functions . . . . . . . . . . . . . . . . . . . . . . 297 12.4 Classification Performance of Discriminant Analysis . . . . . . . . . . . . . . . 300 12.5 Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 12.6 Unequal Misclassification Costs . . . . . . . . . . . . . . . . . . . . . . . . . 302 12.7 Classifying More Than Two Classes . . . . . . . . . . . . . . . . . . . . . . . . 303 Example 3: Medical Dispatch to Accident Scenes . . . . . . . . . . . . . . . . . 303 12.8 Advantages and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 CHAPTER 13 Combining Methods: Ensembles and Uplift Modeling 311 13.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Why Ensembles Can Improve Predictive Power . . . . . . . . . . . . . . . . . . 312 Simple Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Bagging and Boosting in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Advantages and Weaknesses of Ensembles . . . . . . . . . . . . . . . . . . . . 315 13.2 Uplift (Persuasion) Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 A-B Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 CONTENTS xiii Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Gathering the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 A Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 Modeling Individual Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Computing Uplift with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Using the Results of an Uplift Model . . . . . . . . . . . . . . . . . . . . . . . 322 13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 PART V MINING RELATIONSHIPS AMONG RECORDS CHAPTER 14 Association Rules and Collaborative Filtering 329 14.1 Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Discovering Association Rules in Transaction Databases . . . . . . . . . . . . . 330 Example 1: Synthetic Data on Purchases of Phone Faceplates . . . . . . . . . . 330 Generating Candidate Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 The Apriori Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Selecting Strong Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 The Process of Rule Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Rules and Chance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Example 2: Rules for Similar Book Purchases . . . . . . . . . . . . . . . . . . . 340 14.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Data Type and Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Example 3: Netflix Prize Contest . . . . . . . . . . . . . . . . . . . . . . . . . 343 User-Based Collaborative Filtering: “People Like You” . . . . . . . . . . . . . . 344 Item-Based Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . 347 Advantages and Weaknesses of Collaborative Filtering . . . . . . . . . . . . . . 348 Collaborative Filtering vs. Association Rules . . . . . . . . . . . . . . . . . . . 349 14.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 CHAPTER 15 Cluster Analysis 357 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Example: Public Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 15.2 Measuring Distance Between Two Records . . . . . . . . . . . . . . . . . . . . 361 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 Normalizing Numerical Measurements . . . . . . . . . . . . . . . . . . . . . . 362 Other Distance Measures for Numerical Data . . . . . . . . . . . . . . . . . . . 362 Distance Measures for Categorical Data . . . . . . . . . . . . . . . . . . . . . . 365 Distance Measures for Mixed Data . . . . . . . . . . . . . . . . . . . . . . . . 366 15.3 Measuring Distance Between Two Clusters . . . . . . . . . . . . . . . . . . . . 366 Minimum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Maximum Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 xiv CONTENTS Average Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Centroid Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 15.4 Hierarchical (Agglomerative) Clustering . . . . . . . . . . . . . . . . . . . . . 368 Single Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Complete Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Average Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Centroid Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Ward’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Dendrograms: Displaying Clustering Process and Results . . . . . . . . . . . . . 371 Validating Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Limitations of Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 375 15.5 Non-Hierarchical Clustering: The k-Means Algorithm . . . . . . . . . . . . . . . 376 Choosing the Number of Clusters (k) . . . . . . . . . . . . . . . . . . . . . . . 377 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 PART VI FORECASTING TIME SERIES CHAPTER 16 Handling Time Series 387 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 16.2 Descriptive vs. Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . . 389 16.3 Popular Forecasting Methods in Business . . . . . . . . . . . . . . . . . . . . . 389 Combining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 16.4 Time Series Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 Example: Ridership on Amtrak Trains . . . . . . . . . . . . . . . . . . . . . . . 390 16.5 Data-Partitioning and Performance Evaluation . . . . . . . . . . . . . . . . . . 395 Benchmark Performance: Naive Forecasts . . . . . . . . . . . . . . . . . . . . 395 Generating Future Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 CHAPTER 17 Regression-Based Forecasting 401 17.1 A Model with Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Linear Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Exponential Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Polynomial Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 17.2 A Model with Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 17.3 A Model with Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . 411 17.4 Autocorrelation and ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . . 412 Computing Autocorrelation . . . . . . . . . . . . . . . . . …
CATEGORIES
Economics Nursing Applied Sciences Psychology Science Management Computer Science Human Resource Management Accounting Information Systems English Anatomy Operations Management Sociology Literature Education Business & Finance Marketing Engineering Statistics Biology Political Science Reading History Financial markets Philosophy Mathematics Law Criminal Architecture and Design Government Social Science World history Chemistry Humanities Business Finance Writing Programming Telecommunications Engineering Geography Physics Spanish ach e. Embedded Entrepreneurship f. Three Social Entrepreneurship Models g. Social-Founder Identity h. Micros-enterprise Development Outcomes Subset 2. Indigenous Entrepreneurship Approaches (Outside of Canada) a. Indigenous Australian Entrepreneurs Exami Calculus (people influence of  others) processes that you perceived occurs in this specific Institution Select one of the forms of stratification highlighted (focus on inter the intersectionalities  of these three) to reflect and analyze the potential ways these ( American history Pharmacology Ancient history . Also Numerical analysis Environmental science Electrical Engineering Precalculus Physiology Civil Engineering Electronic Engineering ness Horizons Algebra Geology Physical chemistry nt When considering both O lassrooms Civil Probability ions Identify a specific consumer product that you or your family have used for quite some time. This might be a branded smartphone (if you have used several versions over the years) or the court to consider in its deliberations. Locard’s exchange principle argues that during the commission of a crime Chemical Engineering Ecology aragraphs (meaning 25 sentences or more). Your assignment may be more than 5 paragraphs but not less. INSTRUCTIONS:  To access the FNU Online Library for journals and articles you can go the FNU library link here:  https://www.fnu.edu/library/ In order to n that draws upon the theoretical reading to explain and contextualize the design choices. Be sure to directly quote or paraphrase the reading ce to the vaccine. Your campaign must educate and inform the audience on the benefits but also create for safe and open dialogue. A key metric of your campaign will be the direct increase in numbers.  Key outcomes: The approach that you take must be clear Mechanical Engineering Organic chemistry Geometry nment Topic You will need to pick one topic for your project (5 pts) Literature search You will need to perform a literature search for your topic Geophysics you been involved with a company doing a redesign of business processes Communication on Customer Relations. Discuss how two-way communication on social media channels impacts businesses both positively and negatively. Provide any personal examples from your experience od pressure and hypertension via a community-wide intervention that targets the problem across the lifespan (i.e. includes all ages). Develop a community-wide intervention to reduce elevated blood pressure and hypertension in the State of Alabama that in in body of the report Conclusions References (8 References Minimum) *** Words count = 2000 words. *** In-Text Citations and References using Harvard style. *** In Task section I’ve chose (Economic issues in overseas contracting)" Electromagnetism w or quality improvement; it was just all part of good nursing care.  The goal for quality improvement is to monitor patient outcomes using statistics for comparison to standards of care for different diseases e a 1 to 2 slide Microsoft PowerPoint presentation on the different models of case management.  Include speaker notes... .....Describe three different models of case management. visual representations of information. They can include numbers SSAY ame workbook for all 3 milestones. You do not need to download a new copy for Milestones 2 or 3. When you submit Milestone 3 pages): Provide a description of an existing intervention in Canada making the appropriate buying decisions in an ethical and professional manner. Topic: Purchasing and Technology You read about blockchain ledger technology. Now do some additional research out on the Internet and share your URL with the rest of the class be aware of which features their competitors are opting to include so the product development teams can design similar or enhanced features to attract more of the market. The more unique low (The Top Health Industry Trends to Watch in 2015) to assist you with this discussion.         https://youtu.be/fRym_jyuBc0 Next year the $2.8 trillion U.S. healthcare industry will   finally begin to look and feel more like the rest of the business wo evidence-based primary care curriculum. Throughout your nurse practitioner program Vignette Understanding Gender Fluidity Providing Inclusive Quality Care Affirming Clinical Encounters Conclusion References Nurse Practitioner Knowledge Mechanics and word limit is unit as a guide only. The assessment may be re-attempted on two further occasions (maximum three attempts in total). All assessments must be resubmitted 3 days within receiving your unsatisfactory grade. You must clearly indicate “Re-su Trigonometry Article writing Other 5. June 29 After the components sending to the manufacturing house 1. In 1972 the Furman v. Georgia case resulted in a decision that would put action into motion. Furman was originally sentenced to death because of a murder he committed in Georgia but the court debated whether or not this was a violation of his 8th amend One of the first conflicts that would need to be investigated would be whether the human service professional followed the responsibility to client ethical standard.  While developing a relationship with client it is important to clarify that if danger or Ethical behavior is a critical topic in the workplace because the impact of it can make or break a business No matter which type of health care organization With a direct sale During the pandemic Computers are being used to monitor the spread of outbreaks in different areas of the world and with this record 3. Furman v. Georgia is a U.S Supreme Court case that resolves around the Eighth Amendments ban on cruel and unsual punishment in death penalty cases. The Furman v. Georgia case was based on Furman being convicted of murder in Georgia. Furman was caught i One major ethical conflict that may arise in my investigation is the Responsibility to Client in both Standard 3 and Standard 4 of the Ethical Standards for Human Service Professionals (2015).  Making sure we do not disclose information without consent ev 4. Identify two examples of real world problems that you have observed in your personal Summary & Evaluation: Reference & 188. Academic Search Ultimate Ethics We can mention at least one example of how the violation of ethical standards can be prevented. Many organizations promote ethical self-regulation by creating moral codes to help direct their business activities *DDB is used for the first three years For example The inbound logistics for William Instrument refer to purchase components from various electronic firms. During the purchase process William need to consider the quality and price of the components. In this case 4. A U.S. Supreme Court case known as Furman v. Georgia (1972) is a landmark case that involved Eighth Amendment’s ban of unusual and cruel punishment in death penalty cases (Furman v. Georgia (1972) With covid coming into place In my opinion with Not necessarily all home buyers are the same! When you choose to work with we buy ugly houses Baltimore & nationwide USA The ability to view ourselves from an unbiased perspective allows us to critically assess our personal strengths and weaknesses. This is an important step in the process of finding the right resources for our personal learning style. Ego and pride can be · By Day 1 of this week While you must form your answers to the questions below from our assigned reading material CliftonLarsonAllen LLP (2013) 5 The family dynamic is awkward at first since the most outgoing and straight forward person in the family in Linda Urien The most important benefit of my statistical analysis would be the accuracy with which I interpret the data. The greatest obstacle From a similar but larger point of view 4 In order to get the entire family to come back for another session I would suggest coming in on a day the restaurant is not open When seeking to identify a patient’s health condition After viewing the you tube videos on prayer Your paper must be at least two pages in length (not counting the title and reference pages) The word assimilate is negative to me. I believe everyone should learn about a country that they are going to live in. It doesnt mean that they have to believe that everything in America is better than where they came from. It means that they care enough Data collection Single Subject Chris is a social worker in a geriatric case management program located in a midsize Northeastern town. She has an MSW and is part of a team of case managers that likes to continuously improve on its practice. The team is currently using an I would start off with Linda on repeating her options for the child and going over what she is feeling with each option.  I would want to find out what she is afraid of.  I would avoid asking her any “why” questions because I want her to be in the here an Summarize the advantages and disadvantages of using an Internet site as means of collecting data for psychological research (Comp 2.1) 25.0\% Summarization of the advantages and disadvantages of using an Internet site as means of collecting data for psych Identify the type of research used in a chosen study Compose a 1 Optics effect relationship becomes more difficult—as the researcher cannot enact total control of another person even in an experimental environment. Social workers serve clients in highly complex real-world environments. Clients often implement recommended inte I think knowing more about you will allow you to be able to choose the right resources Be 4 pages in length soft MB-920 dumps review and documentation and high-quality listing pdf MB-920 braindumps also recommended and approved by Microsoft experts. The practical test g One thing you will need to do in college is learn how to find and use references. References support your ideas. College-level work must be supported by research. You are expected to do that for this paper. You will research Elaborate on any potential confounds or ethical concerns while participating in the psychological study 20.0\% Elaboration on any potential confounds or ethical concerns while participating in the psychological study is missing. Elaboration on any potenti 3 The first thing I would do in the family’s first session is develop a genogram of the family to get an idea of all the individuals who play a major role in Linda’s life. After establishing where each member is in relation to the family A Health in All Policies approach Note: The requirements outlined below correspond to the grading criteria in the scoring guide. At a minimum Chen Read Connecting Communities and Complexity: A Case Study in Creating the Conditions for Transformational Change Read Reflections on Cultural Humility Read A Basic Guide to ABCD Community Organizing Use the bolded black section and sub-section titles below to organize your paper. For each section Losinski forwarded the article on a priority basis to Mary Scott Losinksi wanted details on use of the ED at CGH. He asked the administrative resident