Business Intelligence Case Study and Questions - Programming
carefully review and read both end of chapter application cases from chapters 1 and 2 from the following required book,Sharda, R., Delen, D., & Turban, E. (2015) Business intelligence and analytics: Systems for decision support (10th ed.). Boston: Pearson.Digital: ISBN-13: 978-0-13-340193-6 or Print: ISBN-13: 978-0-13-305090-5After reading and analyzing both case studies, address all case study questions found within the case studies in scholarly detail. In addition to answering all case study questions, put yourself in these situational cases and what ideas would you have to make any operational processes or process flows better where associated in the decision-making process?Discussion ExpectationsPlease make sure to proof read your post prior to submission. They should be well written and free of grammatical or typographical errors.Initial postings are due by Wednesday. You are encouraged to post your follow-up comments to different students, and you can do more than two if you want and these peer replies are due by Saturday. Postings should include scholarly detail with research support where appropriate
it445_book_edit_bi_.pdf
Unformatted Attachment Preview
BUSINESS INTELLIGENCE
AND ANALYTICS
RAMESH SHARDA
DURSUN DELEN
EFRAIM TURBAN
TENTH EDITION
.•
TENTH EDITION
BUSINESS INTELLIGENCE
AND ANALYTICS:
SYSTEMS FOR DECISION SUPPORT
Ramesh Sharda
Oklahoma State University
Dursun Delen
Oklahoma State University
Efraim Turban
University of Hawaii
With contributions by
J.E.Aronson
Tbe University of Georgia
Ting-Peng Liang
National Sun Yat-sen University
David King
]DA Software Group, Inc.
PEARSON
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Editor in Chief: Stephanie Wall
Executive Editor: Bob Horan
Program Manager Team Lead: Ashley Santora
Program Manager: Denise Vaughn
Executive Marketing Manager: Anne Fahlgren
Project Manager Team Lead: Judy Leale
Project Manager: Tom Benfatti
Operations Specialist: Michelle Klein
Creative Director: Jayne Conte
Cover Designer: Suzanne Behnke
Digital Production Project Manager: Lisa
Rinaldi
Full-Service Project Management: George Jacob,
Integra Software Solutions.
Printer/Binder: Edwards Brothers Malloy-Jackson
Road
Cover Printer: Lehigh/Phoenix-Hagerstown
Text Font: Garamond
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.
Microsoft and/ or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided as is without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services.
The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may
make improvements and/or changes in the product(s) and/ or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.
Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A.
and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.
Copyright© 2015, 2011, 2007 by Pearson Education, Inc., One Lake Street, Upper Saddle River,
New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.
Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.
Library of Congress Cataloging-in-Publication Data
Turban, Efraim.
[Decision support and expert system,)
Business intelligence and analytics: systems for decision support/Ramesh Sharda, Oklahoma State University,
Dursun Delen, Oklahoma State University, Efraim Turban, University of Hawaii; With contributions
by J. E. Aronson, The University of Georgia, Ting-Peng Liang, National Sun Yat-sen University,
David King, JOA Software Group, Inc.-Tenth edition.
pages cm
ISBN-13: 978-0-13-305090-5
ISBN-10: 0-13-305090-4
1. Management-Data processing. 2. Decision support systems. 3. Expert systems (Compute r science)
4. Business intelligence. I. Title.
HD30.2.T87 2014
658.403801 l-dc23
2013028826
10 9 8 7 6 5 4 3 2 1
PEARSON
ISBN 10: 0-13-305090-4
ISBN 13: 978-0-13-305090-5
BRIEF CONTENTS
Preface xxi
About the Authors xxix
PART I
Decision Making and Analytics: An Overview
PART II
1
Chapter 1
An Overview of Business Intelligence, Analytics,
and Decision Support 2
Chapter 2
Foundations and Technologies for Decision Making
Descriptive Analytics
77
Chapter 3
Data Warehousing
Chapter 4
Business Reporting, Visual Analytics, and Business
Performance Management 135
PART Ill Predictive Analytics
78
185
Chapter 5
Data Mining
Chapter 6
Techniques for Predictive Modeling
Chapter 7
Text Analytics, Text Mining, and Sentiment Analysis
Chapter 8
Web Analytics, Web Mining, and Social Analytics
186
PART IV Prescriptive Analytics
Chapter 9
37
243
288
338
391
Model-Based Decision Making: Optimization and MultiCriteria Systems 392
Chapter 10 Modeling and Analysis: Heuristic Search Methods and
Simulation 435
Chapter 11
Automated Decision Systems and Expert Systems
469
Chapter 12
Knowledge Management and Collaborative Systems
507
PART V Big Data and Future Directions for Business
Analytics 541
Chapter 13 Big Data and Analytics
542
Chapter 14 Business Analytics: Emerging Trends and Future
Impacts 592
Glossary
Index
634
648
iii
CONTENTS
Preface
xxi
About the Authors xxix
Part I
Decision Making and Analytics: An Overview
1
Chapter 1 An Overview of Business Intelligence, Analytics, and
Decision Support 2
1.1
Opening Vignette: Magpie Sensing Employs Analytics to
Manage a Vaccine Supply Chain Effectively and Safely 3
1.2
Changing Business Environments and Computerized
Decision Support 5
The Business Pressures-Responses-Support Model
1.3
Managerial Decision Making
The Nature of Managers Work
The Decision-Making Process
5
7
7
8
1.4
Information Systems Support for Decision Making
1.5
An Early Framework for Computerized Decision
Support 11
The Gorry and Scott-Morton Classical Framework
Computer Support for Structured Decisions
Computer Support for Semistructured Problems
13
13
The Concept of Decision Support Systems (DSS)
DSS as an Umbrella Term
14
A Framework for Business Intelligence (Bl)
Definitions of Bl
14
14
A Brief History of Bl
14
The Architecture of Bl
Styles of Bl
13
13
Evolution of DSS into Business Intelligence
1.7
11
12
Computer Support for Unstructured Decisions
1.6
9
15
15
The Origins and Drivers of Bl
16
A Multimedia Exercise in Business Intelligence 16
~ APPLICATION CASE 1.1 Sabre Helps Its Clients Through Dashboards
and Analytics 17
The DSS-BI Connection
1.8
18
Business Analytics Overview
Descriptive Analytics
~
20
APPLICATION CASE 1.2 Eliminating Inefficiencies at Seattle
Childrens Hospital
~
21
APPLICATION CASE 1.3 Analysis at the Speed of Thought
Predictive Analytics
iv
19
22
22
Conte nts
~
APPLICATION CASE 1.4 Moneybal/: Analytics in Sports and Movies
~
APPLICATION CASE 1.5 Analyzing Athletic Injuries
Prescriptive Analytics
23
24
24
~ APPLICATION CASE 1.6 Industrial and Commercial Bank of China
(ICBC) Employs Models to Reconfigure Its Branch Network
1.9
Analytics Applied to Different Domains 26
Analytics or Data Science? 26
Brief Introduction to Big Data Analytics
What Is Big Data? 27
~
25
27
APPLICATION CASE 1.7 Gilt Groupes Flash Sales Streamlined by Big
Data Analytics 29
1.10 Plan of the Book 29
Part I: Business Analytics: An Overview
Part II: Descriptive Analytics 30
29
Part Ill: Predictive Analytics 30
Part IV: Prescriptive Analytics 31
Part V: Big Data and Future Directions for Business Analytics 31
1.11 Resources, Links, and the Teradata University Network
Connection 31
Resources and Links 31
Vendors, Products, and Demos 31
Periodicals 31
The Teradata University Network Connection
The Books Web Site 32
Chapter Highlights
32
Questions for Discussion
~
•
Key Terms
33
•
32
33
Exercises
33
END-OF-CHAPTER APPLICATION CASE Nationwide Insurance Used Bl
to Enhance Customer Service 34
References
35
Chapter 2 Foundations and Technologies for Decision Making
2.1
2.2
Opening Vignette: Decision Modeling at HP Using
Spreadsheets 38
Decision Making: Introduction and Definitions 40
Characteristics of Decision Making 40
A Working Definition of Decision Making
Decision-Making Disciplines 41
2.3
2.4
41
Decision Style and Decision Makers 41
Phases of the Decision-Making Process 42
Decision Making: The Intelligence Phase 44
Problem (or Opportunity) Identification 45
~
APPLICATION CASE 2.1 Making Elevators Go Faster!
Problem Classification
46
Problem Decomposition
Problem Ownership
46
46
45
37
v
vi
Contents
2.5
Decision Making: The Design Phase
Models
47
Mathematical (Quantitative) Models
The Benefits of Models
Normative Models
Suboptimization
47
47
Selection of a Principle of Choice
48
49
49
Descriptive Models
50
Good Enough, or Satisficing
51
Developing (Generating) Alternatives
Measuring Outcomes
Risk
47
52
53
53
Scenarios
54
Possible Scenarios
54
Errors in Decision Making
54
2.6
Decision Making: The Choice Phase
2.7
Decision Making: The Implementation Phase
2.8
How Decisions Are Supported
Support for the Intelligence Phase
Support for the Design Phase
57
Support for the Choice Phase
58
56
58
Decision Support Systems: Capabilities
A DSS Application
55
56
Support for the Implementation Phase
2.9
55
59
59
2.10 DSS Classifications
61
The AIS SIGDSS Classification for DSS
Other DSS Categories
61
63
Custom-Made Systems Versus Ready-Made Systems
63
2.11 Components of Decision Support Systems
The Data Management Subsystem
64
65
The Model Management Subsystem 65
~ APPLICATION CASE 2.2 Station Casinos Wins by Building Customer
Relationships Using Its Data
~
66
APPLICATION CASE 2.3 SNAP DSS Helps OneNet Make
Telecommunications Rate Decisions 68
The User Interface Subsystem
68
The Knowledge-Based Management Subsystem 69
~ APPLICATION CASE 2.4 From a Game Winner to a Doctor!
Chapter Highlights
72
Questions for Discussion
~
•
Key Terms
73
•
70
73
Exercises
74
END-OF-CHAPTER APPLICATION CASE Logistics Optimization in a
Major Shipping Company (CSAV)
References
75
74
Conte nts
Part II Descriptive Analytics
Chapter 3 Data Warehousing
77
78
3.1
Opening Vignette: Isle of Capri Casinos Is Winning with
Enterprise Data Warehouse 79
3.2
Data Warehousing Definitions and Concepts
What Is a Data Warehouse?
81
A Historical Perspective to Data Warehousing
Characteristics of Data Warehousing
Data Marts
85
APPLICATION CASE 3.1 A Better Data Plan: Well-Established TELCOs
Leverage Data Warehousing and Analytics to Stay on Top in a
Competitive Industry 85
Data Warehousing Process Overview
~
3.4
83
84
Enterprise Data Warehouses (EDW)
Metadata 85
3.3
81
84
Operational Data Stores
~
Data Warehousing Architectures
Which Architecture Is the Best?
90
93
96
Data Integration and the Extraction, Transformation, and
Load (ETL) Processes 97
Data Integration
~
98
APPLICATION CASE 3.3 BP Lubricants Achieves BIGS Success
Extraction, Transfonnation, and Load
3.6
87
APPLICATION CASE 3.2 Data Warehousing Helps MultiCare Save
More Lives 88
Alternative Data Warehousing Architectures
3.5
102
APPLICATION CASE 3.4 Things Go Better with Cokes Data
Warehouse
103
Data Warehouse Development Approaches
~
103
APPLICATION CASE 3.5 Starwood Hotels & Resorts Manages Hotel
Profitability with Data Warehousing 106
Additional Data Warehouse Development Considerations
Representation of Data in Data Warehouse
Analysis of Data in the Data Warehouse
OLAP Versus OLTP
OLAP Operations
109
110
11 0
Real-Time Data Warehousing
~
113
APPLICATION CASE 3.6 EDW Helps Connect State Agencies in
Michigan 115
Massive Data Warehouses and Scalability
3.8
107
108
Data Warehousing Implementation Issues
~
98
100
Data Warehouse Development
~
3.7
81
116
117
APPLICATION CASE 3.7 Egg Pie Fries the Competition in Near Real
Time 118
vii
viii
Contents
3.9
Data Warehouse Administration, Security Issues, and Future
Trends 121
The Future of Data Warehousing
123
3.10 Resources, Links, and the Teradata University Network
Connection 126
Resources and Links 126
Cases 126
Vendors, Products, and Demos 127
Periodicals 127
Additional References 127
The Teradata University Network (TUN) Connection 127
Chapter Highlights
128
•
Questions for Discussion
Key Terms
128
•
128
Exercises
129
.... END-OF-CHAPTER APPLICATION CASE Continental Airlines Flies High
with Its Real-Time Data Warehouse
References
131
132
Chapter 4 Business Reporting, Visual Analytics, and Business
Performance Management 135
4.1
Opening Vignette:Self-Service Reporting Environment
Saves Millions for Corporate Customers 136
4.2
Business Reporting Definitions and Concepts
What Is a Business Report?
139
140
..,. APPLICATION CASE 4.1 Delta Lloyd Group Ensures Accuracy and
Efficiency in Financial Reporting
141
Components of the Business Reporting System
143
.... APPLICATION CASE 4.2 Flood of Paper Ends at FEMA
4.3
Data and Information Visualization
144
145
..,. APPLICATION CASE 4.3 Tableau Saves Blastrac Thousands of Dollars
with Simplified Information Sharing
A Brief History of Data Visualization
146
147
.... APPLICATION CASE 4.4 TIBCO Spotfire Provides Dana-Farber Cancer
Institute with Unprecedented Insight into Cancer Vaccine Clinical
Trials 149
4.4
Different Types of Charts and Graphs
Basic Charts and Graphs
Specialized Charts and Graphs
4.5
151
The Emergence of Data Visualization and Visual
Analytics 154
Visual Analytics
156
High-Powered Visual Analytics Environments
4.6
150
150
Performance Dashboards
158
160
.... APPLICATION CASE 4.5 Dallas Cowboys Score Big with Tableau and
Teknion
161
Conte nts
Dashboard Design
~
162
APPLICATION CASE 4.6 Saudi Telecom Company Excels with
Information Visualization 163
What to Look For in a Dashboard
164
Best Practices in Dashboard Design
165
Benchmark Key Performance Indicators with Industry Standards
Wrap the Dashboard Metrics with Contextual Metadata
165
Validate the Dashboard Design by a Usability Specialist
165
Prioritize and Rank Alerts/Exceptions Streamed to the Dashboard
Enrich Dashboard with Business Users Comments
Present Information in Three Different Levels
4.7
166
~
4.8
166
167
APPLICATION CASE 4.7 IBM Cognos Express Helps Mace for Faster
and Better Business Reporting 169
Performance Measurement
Key Performance Indicator (KPI)
170
171
Performance Measurement System
4.9
166
166
Business Performance Management
Closed-Loop BPM Cycle
165
165
Pick the Right Visual Construct Using Dashboard Design Principles
Provide for Guided Analytics
165
Balanced Scorecards
The Four Perspectives
172
172
173
The Meaning of Balance in BSC
17 4
Dashboards Versus Scorecards
174
4.10 Six Sigma as a Performance Measurement System
The DMAIC Performance Model
175
176
Balanced Scorecard Versus Six Sigma
176
Effective Performance Measurement 177
~ APPLICATION CASE 4.8 Expedia.coms Customer Satisfaction
Scorecard
178
Chapter Highlights
179
Questions for Discussion
~
•
180
Exercises
181
184
Part Ill Predictive Analytics
Chapter 5 Data Mining
5.2
181
Key Terms
END-OF-CHAPTER APPLICATION CASE Smart Business Reporting
Helps Healthcare Providers Deliver Better Care 182
References
5.1
•
185
186
Opening Vignette: Cabelas Reels in More Customers with
Advanced Analytics and Data Mining 187
Data Mining Concepts and Applications
~
189
APPLICATION CASE 5.1 Smarter Insurance: Infinity P&C Improves
Customer Service and Combats Fraud with Predictive Analytics
191
ix
x
Contents
Definitions, Characteristics, and Benefits
192
..,. APPLICATION CASE 5.2 Harnessing Analytics to Combat Crime:
Predictive Analytics Helps Memphis Police Department Pinpoint Crime
and Focus Police Resources 196
5.3
How Data Mining Works 197
Data Mining Versus Statistics 200
Data Mining Applications 201
.... APPLICATION CASE 5.3 A Mine on Terrorist Funding
5.4
203
Data Mining Process 204
Step 1: Business Understanding 205
Step 2: Data Understanding 205
Step 3: Data Preparation 206
Step 4: Model Building 208
.... APPLICATION CASE 5.4 Data Mining in Cancer Research
Step 5: Testing and Evaluation
5.5
5.6
5.7
210
211
Step 6: Deployment 211
Other Data Mining Standardized Processes and Methodologies 212
Data Mining Methods 214
Classification 214
Estimating the True Accuracy of Classification Models 215
Cluster Analysis for Data Mining 220
..,. APPLICATION CASE 5.5 2degrees Gets a 1275 Percent Boost in Churn
Identification 221
Association Rule Mining 224
Data Mining Software Tools 228
.... APPLICATION CASE 5.6 Data Mining Goes to Hollywood: Predicting
Financial Success of Movies 231
Data Mining Privacy Issues, Myths, and Blunders 234
Data Mining and Privacy Issues 234
.... APPLICATION CASE 5.7 Predicting Customer Buying Patterns-The
Target Story 235
Data Mining Myths and Blunders 236
Chapter Highlights
237
•
Key Terms
238
Questions for Discussion 238 • Exercises 239
.... END-OF-CHAPTER APPLICATION CASE Macys.com Enhances Its
Customers Shopping Experience with Analytics
References
241
241
Chapter 6 Techniques for Predictive Modeling
243
6.1
Opening Vignette: Predictive Modeling Helps Better
Understand and Manage Complex Medical
Procedures 244
6.2
Basic Concepts of Neural Networks 247
Biological and Artificial Neural Networks 248
..,. APPLICATION CASE 6.1 Neural Networks Are Helping to Save Lives in
the Mining Industry 250
Elements of ANN 251
Conte nts
Network Information Processing 252
Neural Network Architectures 254
~
APPLICATION CASE 6.2 Predictive Modeling Is Powering the Power
Generators 256
6.3
Developing Neural Network-Based Systems
The General ANN Learning Process 259
Backpropagation 260
6.4
Illuminating the Black Box of ANN with Sensitivity
Analysis 262
~
6.5
APPLICATION CASE 6.3 Sensitivity Analysis Reveals Injury Severity
Factors in Traffic Accidents 264
Support Vector Machines
~
265
APPLICATION CASE 6.4 Managing Student Retention with Predictive
Modeling 266
Mathematical Formulation of SVMs
Primal Form 271
Dual Form 271
Soft Margin 271
Nonlinear Classification
Kernel Trick 272
270
272
6.6
A Process-Based Approach to the Use of SVM
Support Vector Machines Versus Artificial Neural Networks
6.7
Nearest Neighbor Method for Prediction
Similarity Measure: The Distance Metric 276
Parameter Selection
~
258
273
274
275
277
APPLICATION CASE 6.5 Efficient Image Recognition and
Categorization with kNN 278
Chapter Highlights
280
•
Key Terms
280
Questions for Discussion 281 • Exercises 281
~ END-OF-CHAPTER APPLICATION CASE Coors Improves Beer Flavors
with Neural Networks
References
284
285
Chapter 7 Text Analytics, Text Mining, and Sentiment Analysis
288
7.1
Opening Vignette: Machine Versus Men on Jeopardy!: The
Story of Watson 289
7.2
Text Analytics and Text Mining Concepts and
Definitions 291
~
7.3
Natural Language Processing
~
7.4
APPLICATION CASE 7.1 Text Mining for Patent Analysis
296
APPLICATION CASE 7.2 Text Mining Improves Hong Kong
Governments Ability to Anticipate and Address Public Complaints
Text Mining Applications
Marketing Applications
Security Applications
~
295
300
301
301
APPLICATION CASE 7.3 Mining for Lies
Biomedical App ...
Purchase answer to see full
attachment
CATEGORIES
Economics
Nursing
Applied Sciences
Psychology
Science
Management
Computer Science
Human Resource Management
Accounting
Information Systems
English
Anatomy
Operations Management
Sociology
Literature
Education
Business & Finance
Marketing
Engineering
Statistics
Biology
Political Science
Reading
History
Financial markets
Philosophy
Mathematics
Law
Criminal
Architecture and Design
Government
Social Science
World history
Chemistry
Humanities
Business Finance
Writing
Programming
Telecommunications Engineering
Geography
Physics
Spanish
ach
e. Embedded Entrepreneurship
f. Three Social Entrepreneurship Models
g. Social-Founder Identity
h. Micros-enterprise Development
Outcomes
Subset 2. Indigenous Entrepreneurship Approaches (Outside of Canada)
a. Indigenous Australian Entrepreneurs Exami
Calculus
(people influence of
others) processes that you perceived occurs in this specific Institution Select one of the forms of stratification highlighted (focus on inter the intersectionalities
of these three) to reflect and analyze the potential ways these (
American history
Pharmacology
Ancient history
. Also
Numerical analysis
Environmental science
Electrical Engineering
Precalculus
Physiology
Civil Engineering
Electronic Engineering
ness Horizons
Algebra
Geology
Physical chemistry
nt
When considering both O
lassrooms
Civil
Probability
ions
Identify a specific consumer product that you or your family have used for quite some time. This might be a branded smartphone (if you have used several versions over the years)
or the court to consider in its deliberations. Locard’s exchange principle argues that during the commission of a crime
Chemical Engineering
Ecology
aragraphs (meaning 25 sentences or more). Your assignment may be more than 5 paragraphs but not less.
INSTRUCTIONS:
To access the FNU Online Library for journals and articles you can go the FNU library link here:
https://www.fnu.edu/library/
In order to
n that draws upon the theoretical reading to explain and contextualize the design choices. Be sure to directly quote or paraphrase the reading
ce to the vaccine. Your campaign must educate and inform the audience on the benefits but also create for safe and open dialogue. A key metric of your campaign will be the direct increase in numbers.
Key outcomes: The approach that you take must be clear
Mechanical Engineering
Organic chemistry
Geometry
nment
Topic
You will need to pick one topic for your project (5 pts)
Literature search
You will need to perform a literature search for your topic
Geophysics
you been involved with a company doing a redesign of business processes
Communication on Customer Relations. Discuss how two-way communication on social media channels impacts businesses both positively and negatively. Provide any personal examples from your experience
od pressure and hypertension via a community-wide intervention that targets the problem across the lifespan (i.e. includes all ages).
Develop a community-wide intervention to reduce elevated blood pressure and hypertension in the State of Alabama that in
in body of the report
Conclusions
References (8 References Minimum)
*** Words count = 2000 words.
*** In-Text Citations and References using Harvard style.
*** In Task section I’ve chose (Economic issues in overseas contracting)"
Electromagnetism
w or quality improvement; it was just all part of good nursing care. The goal for quality improvement is to monitor patient outcomes using statistics for comparison to standards of care for different diseases
e a 1 to 2 slide Microsoft PowerPoint presentation on the different models of case management. Include speaker notes... .....Describe three different models of case management.
visual representations of information. They can include numbers
SSAY
ame workbook for all 3 milestones. You do not need to download a new copy for Milestones 2 or 3. When you submit Milestone 3
pages):
Provide a description of an existing intervention in Canada
making the appropriate buying decisions in an ethical and professional manner.
Topic: Purchasing and Technology
You read about blockchain ledger technology. Now do some additional research out on the Internet and share your URL with the rest of the class
be aware of which features their competitors are opting to include so the product development teams can design similar or enhanced features to attract more of the market. The more unique
low (The Top Health Industry Trends to Watch in 2015) to assist you with this discussion.
https://youtu.be/fRym_jyuBc0
Next year the $2.8 trillion U.S. healthcare industry will finally begin to look and feel more like the rest of the business wo
evidence-based primary care curriculum. Throughout your nurse practitioner program
Vignette
Understanding Gender Fluidity
Providing Inclusive Quality Care
Affirming Clinical Encounters
Conclusion
References
Nurse Practitioner Knowledge
Mechanics
and word limit is unit as a guide only.
The assessment may be re-attempted on two further occasions (maximum three attempts in total). All assessments must be resubmitted 3 days within receiving your unsatisfactory grade. You must clearly indicate “Re-su
Trigonometry
Article writing
Other
5. June 29
After the components sending to the manufacturing house
1. In 1972 the Furman v. Georgia case resulted in a decision that would put action into motion. Furman was originally sentenced to death because of a murder he committed in Georgia but the court debated whether or not this was a violation of his 8th amend
One of the first conflicts that would need to be investigated would be whether the human service professional followed the responsibility to client ethical standard. While developing a relationship with client it is important to clarify that if danger or
Ethical behavior is a critical topic in the workplace because the impact of it can make or break a business
No matter which type of health care organization
With a direct sale
During the pandemic
Computers are being used to monitor the spread of outbreaks in different areas of the world and with this record
3. Furman v. Georgia is a U.S Supreme Court case that resolves around the Eighth Amendments ban on cruel and unsual punishment in death penalty cases. The Furman v. Georgia case was based on Furman being convicted of murder in Georgia. Furman was caught i
One major ethical conflict that may arise in my investigation is the Responsibility to Client in both Standard 3 and Standard 4 of the Ethical Standards for Human Service Professionals (2015). Making sure we do not disclose information without consent ev
4. Identify two examples of real world problems that you have observed in your personal
Summary & Evaluation: Reference & 188. Academic Search Ultimate
Ethics
We can mention at least one example of how the violation of ethical standards can be prevented. Many organizations promote ethical self-regulation by creating moral codes to help direct their business activities
*DDB is used for the first three years
For example
The inbound logistics for William Instrument refer to purchase components from various electronic firms. During the purchase process William need to consider the quality and price of the components. In this case
4. A U.S. Supreme Court case known as Furman v. Georgia (1972) is a landmark case that involved Eighth Amendment’s ban of unusual and cruel punishment in death penalty cases (Furman v. Georgia (1972)
With covid coming into place
In my opinion
with
Not necessarily all home buyers are the same! When you choose to work with we buy ugly houses Baltimore & nationwide USA
The ability to view ourselves from an unbiased perspective allows us to critically assess our personal strengths and weaknesses. This is an important step in the process of finding the right resources for our personal learning style. Ego and pride can be
· By Day 1 of this week
While you must form your answers to the questions below from our assigned reading material
CliftonLarsonAllen LLP (2013)
5 The family dynamic is awkward at first since the most outgoing and straight forward person in the family in Linda
Urien
The most important benefit of my statistical analysis would be the accuracy with which I interpret the data. The greatest obstacle
From a similar but larger point of view
4 In order to get the entire family to come back for another session I would suggest coming in on a day the restaurant is not open
When seeking to identify a patient’s health condition
After viewing the you tube videos on prayer
Your paper must be at least two pages in length (not counting the title and reference pages)
The word assimilate is negative to me. I believe everyone should learn about a country that they are going to live in. It doesnt mean that they have to believe that everything in America is better than where they came from. It means that they care enough
Data collection
Single Subject Chris is a social worker in a geriatric case management program located in a midsize Northeastern town. She has an MSW and is part of a team of case managers that likes to continuously improve on its practice. The team is currently using an
I would start off with Linda on repeating her options for the child and going over what she is feeling with each option. I would want to find out what she is afraid of. I would avoid asking her any “why” questions because I want her to be in the here an
Summarize the advantages and disadvantages of using an Internet site as means of collecting data for psychological research (Comp 2.1) 25.0\% Summarization of the advantages and disadvantages of using an Internet site as means of collecting data for psych
Identify the type of research used in a chosen study
Compose a 1
Optics
effect relationship becomes more difficult—as the researcher cannot enact total control of another person even in an experimental environment. Social workers serve clients in highly complex real-world environments. Clients often implement recommended inte
I think knowing more about you will allow you to be able to choose the right resources
Be 4 pages in length
soft MB-920 dumps review and documentation and high-quality listing pdf MB-920 braindumps also recommended and approved by Microsoft experts. The practical test
g
One thing you will need to do in college is learn how to find and use references. References support your ideas. College-level work must be supported by research. You are expected to do that for this paper. You will research
Elaborate on any potential confounds or ethical concerns while participating in the psychological study 20.0\% Elaboration on any potential confounds or ethical concerns while participating in the psychological study is missing. Elaboration on any potenti
3 The first thing I would do in the family’s first session is develop a genogram of the family to get an idea of all the individuals who play a major role in Linda’s life. After establishing where each member is in relation to the family
A Health in All Policies approach
Note: The requirements outlined below correspond to the grading criteria in the scoring guide. At a minimum
Chen
Read Connecting Communities and Complexity: A Case Study in Creating the Conditions for Transformational Change
Read Reflections on Cultural Humility
Read A Basic Guide to ABCD Community Organizing
Use the bolded black section and sub-section titles below to organize your paper. For each section
Losinski forwarded the article on a priority basis to Mary Scott
Losinksi wanted details on use of the ED at CGH. He asked the administrative resident