Python Project - Computer Science
Task 1 (50 points): (Intro to Data Science: Survey Response Statistics) Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the student cafeteria, with 1 being “awful” and 5 being “excellent”. Place the 20 responses in a list. 1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 5 Write a program that does the following: (a) Determine and display the frequency of each rating. (b) Use the built-in functions, statistics module functions and NumPy or Panda functions covered in the course materials to display the following response statistics: minimum, maximum, range, mean, median, variance and standard deviation. (c) Display a bar chart showing the response frequencies and their percentages of the total responses. Grading Rubric – 10 points for defining functions. – 15 points for finishing Task1(a)-(c). – 5 points for appropriate comments. – 10 points for a runnable python program with correct data visualization. – 10 points for screenshots of the program. Task 2 (50 points): (Classification with k-Nearest Neighbors and the Digits Dataset) Read the file “09-02-MachineLearning.pdf” and the python program “CaseStudy1.py” to learn the algorithm of k-Nearest Neighbors with the Digits dataset for recognizing handwritten digits. Re-write the python program by doing the following subtasks: (a) Write code to display the two-dimensional array representing the sample image at index 24 and numeric value of the digit the image represents. (b) Write code to display the image for the sample image at index 24 of the Digits dataset. (c) For the Digits dataset, what numbers of samples would the following statement reserve for training and testing purposes? X train, X test, y train, y test = 1 train test split(digits.data, digits.target, random state=11, test size=0.60) 2 (d) Write code to get and display these numbers. (e) Rewrite the list comprehension in snippet [50] using a for loop. Hint: create an empty list and then use the built-in function “append”. Grading Rubric – 15 points for finishing Task2(a)-(e). – 5 points for appropriate comments. – 20 points for a runnable rewritten python program – 10 points for screenshots of the program.
CSCI 333
Final Project
100 points + 10 bonus points
Note: This is an individual assignment. Each student MUST complete the work on his/her own.
Any code sharing/plagiarism is not tolerated.
Overview
This project consists of two tasks. The goal is to apply what we have learned to solve real problems
in Data Science. Glance at “What to Submit” when you start working on a task so that you know
what information to provide from each task.
Submission Example
csci333-project-XX
csci333-project-XX.doc
Task1XX.py
task2XX.py
README.txt
What to Submit
1. One doc file “csci333-project-XX.doc” including the text source code and screenshots of the
outputs of all programs. Please replace XX with your first name and last name. You can
copy/paste the text source code from Pycharm or other IDEs into the doc file. Hopefully,
based on the screen snapshots of the output, you can show that your programs passed tests
and were well.
2. Python files for all programs. In well-defined programs, proper comments are required. For
programs without comments, they will be deducted greatly in grade.
3. Note that if any program or code does not work, you can explain the status of the program or
code and then attach your explanation and description in a file “README.txt”.
4. Optional. Anything you want to attract the attention of instructor in grading.
Task 1 (50 points): (Intro to Data Science: Survey Response Statistics) Twenty students were
asked to rate on a scale of 1 to 5 the quality of the food in the student cafeteria, with 1 being
“awful” and 5 being “excellent”. Place the 20 responses in a list.
1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 5
Write a program that does the following:
(a) Determine and display the frequency of each rating.
(b) Use the built-in functions, statistics module functions and NumPy or Panda functions cov-
ered in the course materials to display the following response statistics: minimum, maximum,
range, mean, median, variance and standard deviation.
(c) Display a bar chart showing the response frequencies and their percentages of the total
responses.
Grading Rubric
– 10 points for defining functions.
– 15 points for finishing Task1(a)-(c).
– 5 points for appropriate comments.
– 10 points for a runnable python program with correct data visualization.
– 10 points for screenshots of the program.
Task 2 (50 points): (Classification with k-Nearest Neighbors and the Digits Dataset) Read the file
“09-02-MachineLearning.pdf” and the python program “CaseStudy1.py” to learn the algorithm
of k-Nearest Neighbors with the Digits dataset for recognizing handwritten digits.
Re-write the python program by doing the following subtasks:
(a) Write code to display the two-dimensional array representing the sample image at index 24
and numeric value of the digit the image represents.
(b) Write code to display the image for the sample image at index 24 of the Digits dataset.
(c) For the Digits dataset, what numbers of samples would the following statement reserve for
training and testing purposes?
1X train, X test, y train, y test =
2train test split(digits.data, digits.target, random state=11, test size=0.60)
(d) Write code to get and display these numbers.
(e) Rewrite the list comprehension in snippet [50] using a for loop. Hint: create an empty list
and then use the built-in function “append”.
Grading Rubric
– 15 points for finishing Task2(a)-(e).
– 5 points for appropriate comments.
– 20 points for a runnable rewritten python program
– 10 points for screenshots of the program.
Challenges in This Project
1. For 10\% extra credit, you are welcome to explore the design of each task. Note: You still have
to finish all tasks required by this project.
2. You should configure your machine and PyCharm properly to facilitate the project develop-
ment.
—————x———— Good Luck ————x————–
#!/usr/bin/env python
# coding: utf-8
# In[36]:
from sklearn.datasets import load_digits
# In[37]:
digits = load_digits()
# In[38]:
print(digits.DESCR)
# In[39]:
digits.target[::100] # target values of every 100th sample
# In[40]:
digits.images[13] # show array for sample image at index 13
# In[41]:
import matplotlib.pyplot as plt
# In[42]:
plt.imshow(digits.images[13])
# In[43]:
figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(6, 4))
for item in zip(axes.ravel(), digits.images, digits.target):
axes, image, target = item
axes.imshow(image, cmap=plt.cm.gray_r)
axes.set_xticks([]) # remove x-axis tick marks
axes.set_yticks([]) # remove y-axis tick marks
axes.set_title(target)
plt.tight_layout()
# In[44]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
digits.data, digits.target, random_state=11, test_size=0.20)
# random_state for reproducibility
# In[45]:
X_train.shape
# In[46]:
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X=X_train, y=y_train)
# In[47]:
predicted = knn.predict(X=X_test)
expected = y_test
predicted[:20]
expected[:20]
# In[48]:
predicted[:20]
# In[49]:
expected[:20]
# In[50]:
wrong = [(p, e) for (p, e) in zip(predicted, expected) if p != e]
# In[51]:
wrong
# In[59]:
print(Model accuracy:\%.2f\%\% \%(knn.score(X_test,y_test)*100))
# In[ ]:
# In[ ]:
{
cells: [
{
cell_type: code,
execution_count: 36,
metadata: {},
outputs: [],
source: [
from sklearn.datasets import load_digits
]
},
{
cell_type: code,
execution_count: 37,
metadata: {},
outputs: [],
source: [
digits = load_digits()
]
},
{
cell_type: code,
execution_count: 38,
metadata: {
scrolled: true
},
outputs: [
{
name: stdout,
output_type: stream,
text: [
.. _digits_dataset:\n,
\n,
Optical recognition of handwritten digits dataset\n,
--------------------------------------------------\n,
\n,
**Data Set Characteristics:**\n,
\n,
:Number of Instances: 5620\n,
:Number of Attributes: 64\n,
:Attribute Information: 8x8 image of integer pixels in the range 0..16.\n,
:Missing Attribute Values: None\n,
:Creator: E. Alpaydin (alpaydin @ boun.edu.tr)\n,
:Date: July; 1998\n,
\n,
This is a copy of the test set of the UCI ML hand-written digits datasets\n,
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits\n,
\n,
The data set contains images of hand-written digits: 10 classes where\n,
each class refers to a digit.\n,
\n,
Preprocessing programs made available by NIST were used to extract\n,
normalized bitmaps of handwritten digits from a preprinted form. From a\n,
total of 43 people, 30 contributed to the training set and different 13\n,
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of\n,
4x4 and the number of on pixels are counted in each block. This generates\n,
an input matrix of 8x8 where each element is an integer in the range\n,
0..16. This reduces dimensionality and gives invariance to small\n,
distortions.\n,
\n,
For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.\n,
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.\n,
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,\n,
1994.\n,
\n,
.. topic:: References\n,
\n,
- C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their\n,
Applications to Handwritten Digit Recognition, MSc Thesis, Institute of\n,
Graduate Studies in Science and Engineering, Bogazici University.\n,
- E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.\n,
- Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.\n,
Linear dimensionalityreduction using relevance weighted LDA. School of\n,
Electrical and Electronic Engineering Nanyang Technological University.\n,
2005.\n,
- Claudio Gentile. A New Approximate Maximal Margin Classification\n,
Algorithm. NIPS. 2000.\n
]
}
],
source: [
print(digits.DESCR)
]
},
{
cell_type: code,
execution_count: 39,
metadata: {},
outputs: [
{
data: {
text/plain: [
array([0, 4, 1, 7, 4, 8, 2, 2, 4, 4, 1, 9, 7, 3, 2, 1, 2, 5])
]
},
execution_count: 39,
metadata: {},
output_type: execute_result
}
],
source: [
digits.target[::100] # target values of every 100th sample
]
},
{
cell_type: code,
execution_count: 40,
metadata: {},
outputs: [
{
data: {
text/plain: [
array([[ 0., 2., 9., 15., 14., 9., 3., 0.],\n,
[ 0., 4., 13., 8., 9., 16., 8., 0.],\n,
[ 0., 0., 0., 6., 14., 15., 3., 0.],\n,
[ 0., 0., 0., 11., 14., 2., 0., 0.],\n,
[ 0., 0., 0., 2., 15., 11., 0., 0.],\n,
[ 0., 0., 0., 0., 2., 15., 4., 0.],\n,
[ 0., 1., 5., 6., 13., 16., 6., 0.],\n,
[ 0., 2., 12., 12., 13., 11., 0., 0.]])
]
},
execution_count: 40,
metadata: {},
output_type: execute_result
}
],
source: [
digits.images[13] # show array for sample image at index 13
]
},
{
cell_type: code,
execution_count: 41,
metadata: {},
outputs: [],
source: [
import matplotlib.pyplot as plt
]
},
{
cell_type: code,
execution_count: 42,
metadata: {},
outputs: [
{
data: {
text/plain: [
<matplotlib.image.AxesImage at 0x1b4a17b0>
]
},
execution_count: 42,
metadata: {},
output_type: execute_result
},
{
data: {
image/png: iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAALPUlEQVR4nO3d/6uW9R3H8derk2aarlpfUZl9FdpgGQdHCEG6hlrUBoMpFKxiEqPICqL2W/9Aqx9GTMwW5JLNckS4WvQ9trn8ti09Gs41PFmZjOaXpaa998O5BcvTznXf5/p23jwfcPDc59yc9+vm+DrXdV/3dV8fR4QA5HFK0wEAlItSA8lQaiAZSg0kQ6mBZE6t4oeO92kxQZOq+NEn8YTTapkjSYcu6KttliRdNnlPbbMORSX/FYa168DZtc06bW/Nr+4c+LSWMYd0UEfisIf7XiW/yQmapO94XhU/+iR9l86sZY4kDdw3ubZZkrR63qO1zdp65PzaZt3z5qLaZl365LHaZknSKa9vqmXOunj5qzPUkgBAbSg1kAylBpKh1EAylBpIhlIDyVBqIBlKDSRDqYFkCpXa9nzb223vsP1A1aEA9G7EUtvuk/QLSQskXSFpse0rqg4GoDdFttSzJe2IiJ0RcUTSKkk3VRsLQK+KlHqqpF0n3B7sfO0LbC+xvd72+s90uKx8ALpUpNTDvb3rpPezRcSyiOiPiP5xqu/tkAC+qEipByVNP+H2NEm7q4kDYLSKlPptSZfZvsj2eEmLJD1XbSwAvRrxIgkRcdT2nZJelNQnaUVEbKk8GYCeFLrySUSslbS24iwASsAZZUAylBpIhlIDyVBqIBlKDSRDqYFkKDWQTH1rrVRk/+Vn1jbrJ/2v1TZLkhY8e19tsz7/2tHaZv1z/vLaZl3ynztqmyVJl75e67hhsaUGkqHUQDKUGkiGUgPJUGogGUoNJEOpgWQoNZAMpQaSodRAMkVW6Fhhe4/td+oIBGB0imypfyVpfsU5AJRkxFJHxBuS/l1DFgAlKO1dWraXSFoiSRM0sawfC6BLpR0oY9kdoB04+g0kQ6mBZIq8pPW0pD9Jmml70Pbt1ccC0Ksia2ktriMIgHKw+w0kQ6mBZCg1kAylBpKh1EAylBpIhlIDyYz5ZXcmrllX26zX15xe2yxJOuOe+v7mPvTTVbXNevezg7XNuvh3h2ub1RZsqYFkKDWQDKUGkqHUQDKUGkiGUgPJUGogGUoNJEOpgWQoNZBMkWuUTbf9qu0B21ts311HMAC9KXLu91FJ90XERtuTJW2w/VJEbK04G4AeFFl254OI2Nj5fL+kAUlTqw4GoDddvUvL9gxJsySd9NYolt0B2qHwgTLbZ0h6RtLSiNj35e+z7A7QDoVKbXuchgq9MiKerTYSgNEocvTbkh6XNBARD1cfCcBoFNlSz5F0i6S5tjd3PhZWnAtAj4osu/OWJNeQBUAJOKMMSIZSA8lQaiAZSg0kQ6mBZCg1kAylBpKh1EAyY34trczOXvh+0xEqsXThbbXNOmXLptpmtQVbaiAZSg0kQ6mBZCg1kAylBpKh1EAylBpIhlIDyVBqIJkiFx6cYPsvtv/aWXbnoTqCAehNkdNED0uaGxEHOpcKfsv27yPizxVnA9CDIhceDEkHOjfHdT6iylAAelf0Yv59tjdL2iPppYgYdtkd2+ttr/9Mh8vOCaCgQqWOiGMRcaWkaZJm2/7WMPdh2R2gBbo6+h0Rn0h6TdL8StIAGLUiR7/PtX1m5/PTJX1X0raqgwHoTZGj3xdKetJ2n4b+CPwmIp6vNhaAXhU5+v03Da1JDWAM4IwyIBlKDSRDqYFkKDWQDKUGkqHUQDKUGkiGUgPJsOxOi52+dEJts65Y+1Ftsz595FBts8ZfV9uo1mBLDSRDqYFkKDWQDKUGkqHUQDKUGkiGUgPJUGogGUoNJEOpgWQKl7pzQf9NtrnoINBi3Wyp75Y0UFUQAOUouuzONEnXS1pebRwAo1V0S/2IpPslff5Vd2AtLaAdiqzQcYOkPRGx4f/dj7W0gHYosqWeI+lG2+9JWiVpru2nKk0FoGcjljoiHoyIaRExQ9IiSa9ExM2VJwPQE16nBpLp6nJGEfGahpayBdBSbKmBZCg1kAylBpKh1EAylBpIhlIDyVBqIBmW3WmxY1u21zZr6cLbapv1y7Urapt1+w/urW2WJE1cs67WecNhSw0kQ6mBZCg1kAylBpKh1EAylBpIhlIDyVBqIBlKDSRDqYFkCp0m2rmS6H5JxyQdjYj+KkMB6F03535fGxF7K0sCoBTsfgPJFC11SPqD7Q22lwx3B5bdAdqh6O73nIjYbfs8SS/Z3hYRb5x4h4hYJmmZJE3x2VFyTgAFFdpSR8Tuzr97JK2RNLvKUAB6V2SBvEm2Jx//XNL3JL1TdTAAvSmy+32+pDW2j9//1xHxQqWpAPRsxFJHxE5J364hC4AS8JIWkAylBpKh1EAylBpIhlIDyVBqIBlKDSQz5pfd6Tv/vNpm7V1wSW2zJOnwWa5t1o9ufbm2WZePm1TbrH0z+mqbJUkTa502PLbUQDKUGkiGUgPJUGogGUoNJEOpgWQoNZAMpQaSodRAMpQaSKZQqW2faXu17W22B2xfXXUwAL0peu73o5JeiIgf2h6vdpziCmAYI5ba9hRJ10j6sSRFxBFJR6qNBaBXRXa/L5b0saQnbG+yvbxz/e8vYNkdoB2KlPpUSVdJeiwiZkk6KOmBL98pIpZFRH9E9I/TaSXHBFBUkVIPShqMiHWd26s1VHIALTRiqSPiQ0m7bM/sfGmepK2VpgLQs6JHv++StLJz5HunpFuriwRgNAqVOiI2S+qvOAuAEnBGGZAMpQaSodRAMpQaSIZSA8lQaiAZSg0kQ6mBZMb8Wlo656zaRn3zjndqm5XZtVtuqm3WBT//Y22z2oItNZAMpQaSodRAMpQaSIZSA8lQaiAZSg0kQ6mBZCg1kMyIpbY90/bmEz722V5aRzgA3RvxNNGI2C7pSkmy3SfpfUlrKs4FoEfd7n7Pk/SPiPhXFWEAjF63b+hYJOnp4b5he4mkJZI0gfXzgMYU3lJ3rvl9o6TfDvd9lt0B2qGb3e8FkjZGxEdVhQEwet2UerG+YtcbQHsUKrXtiZKuk/RstXEAjFbRZXf+K+nrFWcBUALOKAOSodRAMpQaSIZSA8lQaiAZSg0kQ6mBZCg1kIwjovwfan8sqdu3Z54jaW/pYdoh62PjcTXnGxFx7nDfqKTUvbC9PiL6m85RhayPjcfVTux+A8lQaiCZNpV6WdMBKpT1sfG4Wqg1z6kBlKNNW2oAJaDUQDKtKLXt+ba3295h+4Gm85TB9nTbr9oesL3F9t1NZyqT7T7bm2w/33SWMtk+0/Zq29s6v7urm87UrcafU3cWCHhXQ5dLGpT0tqTFEbG10WCjZPtCSRdGxEbbkyVtkPT9sf64jrN9r6R+SVMi4oam85TF9pOS3oyI5Z0r6E6MiE+aztWNNmypZ0vaERE7I+KIpFWSbmo406hFxAcRsbHz+X5JA5KmNpuqHLanSbpe0vKms5TJ9hRJ10h6XJIi4shYK7TUjlJPlbTrhNuDSvKf/zjbMyTNkrSu2SSleUTS/ZI+bzpIyS6W9LGkJzpPLZbbntR0qG61odQe5mtpXmezfYakZyQtjYh9TecZLds3SNoTERuazlKBUyVdJemxiJgl6aCkMXeMpw2lHpQ0/YTb0yTtbihLqWyP01ChV0ZElssrz5F0o+33NPRUaa7tp5qNVJpBSYMRcXyParWGSj6mtKHUb0u6zPZFnQMTiyQ913CmUbNtDT03G4iIh5vOU5aIeDAipkXEDA39rl6JiJsbjlWKiPhQ0i7bMztfmidpzB3Y7HaBvNJFxFHbd0p6UVKfpBURsaXhWGWYI+kWSX+3vbnztZ9FxNoGM2Fkd0la2dnA7JR0a8N5utb4S1oAytWG3W8AJaLUQDKUGkiGUgPJUGogGUoNJEOpgWT+B/FDnfX6Tk+EAAAAAElFTkSuQmCC\n,
text/plain: [
<Figure size 432x288 with 1 Axes>
]
},
metadata: {
needs_background: light
},
output_type: display_data
}
],
source: [
plt.imshow(digits.images[13])
]
},
{
cell_type: code,
execution_count: 43,
metadata: {},
outputs: [
{
data: {
image/png: iVBORw0KGgoAAAANSUhEUgAAAZcAAAEYCAYAAACQgLsAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df4xV9Zk/8PfbwR8o8ksoqT+WAX9Vuyyj8tc2FszCurrtwm7Xfm2tHci3gWhshHQ38IdGsG6EZLtCarU0a2G2Nk0wUXBds41dgawmu+1MgTWmyldlRhFQhwICInSnz/ePe2m45/Mwc2bmc+/nnDvvVzKB++TMvc985pzzzDnP+ZxDM4OIiEhM56ROQEREmo+Ki4iIRKfiIiIi0am4iIhIdCouIiISnYqLiIhEp+IiIiLRNby4kJxI8jmSx0n2kPx6o3MoIpL3kewkeZLkxtT5FAXJ80k+VV1XjpLcQfK21HkVAcmnSe4n+THJ3SS/lTqnIiF5NclPST6dOpciILmtOh7Hql9v1vPzUhy5/ADAKQBTANwF4EmSn0+QR9HsA/AIgB+nTqRgRgF4D8BsAOMAPAhgE8nWhDkVxaMAWs1sLIC/AvAIyZsS51QkPwDwq9RJFMx9Zjam+nVtPT+oocWF5EUAvgLgQTM7ZmavAHgewN2NzKOIzOxZM9sM4GDqXIrEzI6b2Uoz6zaz35vZCwD2ABjxO1Eze93MTp5+Wf26MmFKhUHyTgCHAfxH6lxGqkYfuVwDoM/Mdp8R2wVARy6SC8kpqKxHr6fOpQhIPkHyEwBvANgP4MXEKSVHciyAhwF8J3UuBfQoyV6Sr5KcU88PanRxGQPgSCZ2BMDFDc5DSojkuQB+CqDDzN5InU8RmNm9qGw/NwN4FsDJ/r9jRPgugKfM7L3UiRTMcgDTAVwG4EcA/pVk3Y50G11cjgEYm4mNBXC0wXlIyZA8B8BPUOnX3Zc4nUIxs77qKebLAdyTOp+USLYBmAvgsdS5FI2Z/beZHTWzk2bWAeBVALfX6/NG1euNz2I3gFEkrzaz/1eNzYROcUg/SBLAU6hcBHK7mf0ucUpFNQrqucwB0Arg3cpqgzEAWkheb2Y3JsyriAwA6/XmDT1yMbPjqBy6P0zyIpJfADAflb9IRzSSo0heAKAFlY3hApKNLv5F9SSA6wB82cxOpE6mCEh+huSdJMeQbCF5K4CvAXg5dW6J/QiVAttW/fohgH8DcGvKpFIjOZ7kraf3KyTvAvBFAD+v12emuBT5XgCjAXwI4GcA7jEzHbkADwA4AWAFgG9U//9A0owKgORUAEtQ2VEcOOMa/bsSp5aaoXIKbC+AQwD+EcBSM9uSNKvEzOwTMztw+guVU/GfmtlHqXNL7FxUpjp8BKAXwLcBLDCzus11oR4WJiIisen2LyIiEp2Ki4iIRKfiIiIi0am4iIhIdIO61HXSpEnW2to64HKHDh0KYnv37g1iY8dm51MCl19+eRBraWkZ8DO7u7vR29tbt2u2+5N3XDxvvhlerNHX1xfELr300iA2fvz4Ad+/rONy9GjtvNq33347WGb06NFB7Npr892Lr6urq9fMJg8puWHKOy4HDhwIYu+//37N6/POOy9Y5vrrrw9iebYhoBzj4sluM3v27AmWueqqq4b03kA5xsXbl5x//vk1r4c6vmfT37gMqri0trais7NzwOWeeeaZILZ8+fIgNm/evCC2evXqIDZhwoQBP3PWrFkDLlMvecfFM2fOnCB2+PDhILZq1aogNn/+/AHfv6zjsm3btprXCxYsCJZpa2sb8PvOhmTPUPKKIe+4rFmzJoitWLGi5vVll10WLPPyy+FUlzzbEFCOcfFkt5mFCxcGy2zevHlI7w2UY1y8fUm2mGzcuDFOUlX9jYtOi4mISHQqLiIiEl1dbi/inQLzzoF6vZmJEycGsU2bNgWxO+64Y4jZFYvXN9m+fXsQ27p1axDLc1qsDHbu3BnEbrnllprX48aNC5bp7u6uV0oNlz3dBfjr/fr162teL1myJFimq6sriM2dO3cY2RVf9nSPd8q02XnbQ3Zf0tHRESwzderUXO81WDpyERGR6FRcREQkOhUXERGJTsVFRESiG3ZD32sees17bxLc9OnTg5g398X7jDI29L3Gdd55Gc3coPTmH8ycObPmtTfPxZv7U1aLFy8OYt6FMTfddFPN62nTpgXLNHvz3psHlm3oL126NFgmb5M69kTDRvEuDurpqZ2G4l0Yk3euXZ5J22fSkYuIiESn4iIiItGpuIiISHQqLiIiEt2wG/reLPsbb7wxiHnNe0+2YVlWa9euDWIrV64MYkeOHMn1fl7TrVl4zddsU9VbplnuUAD428c777wTxLIXy3jNe2+bzHvjyjLwbr6YbdZ7N6701iGvSe1tp2XgXYiwa9eumtfe/sa7WGiwzXuPjlxERCQ6FRcREYlOxUVERKJTcRERkejq0tD3ZtkP5/3K2Iz0modekzHvz+bNmC0j7+fwLn7I89TA2E/VKxqvyf/b3/625rXX0Pdiv/jFL4JYGbarLVu2BLFly5YFsfb29gHfa926dUFsw4YNQ0usgLxtJnsHEO8uId54erx9Wn905CIiItGpuIiISHQqLiIiEp2Ki4iIRDfshr7XFPRuke/xmvednZ1B7Ktf/ergE2syXiOujLfh92Y/e43WLK9ZGWMWcdlktzevUb9kyZIgtmbNmiC2evXqeInViXeLeC+WfTa8t714vEc5NJOh3tkj7+MJ+qMjFxERiU7FRUREolNxERGR6FRcREQkumE39L1ZxF5T/plnnskV83jPEpdy8u5SkJ1FDIS3Cvcar94t9xctWpRruTJYsWJFEMvOvvcuinnppZeCWFkvisn7fPdsA9/7Pm8WfzNdFOLdzSB78UPexwnEuNBBRy4iIhKdiouIiESn4iIiItGpuIiISHR1aeh7s4G9pvysWbOCWN7Z/WXkNQ+9ZrPXmPOa3l5zvOi8uwp4s6mzMa8R6Y2T9xzxsjb0vbtfLF68eMDv85r369evj5JTUWW3Le9Z8WXcXgZj69atQSzP3S+8Cx2GOrP/TDpyERGR6FRcREQkOhUXERGJTsVFRESio5nlX5j8CEBP/dIZlqlmNjnFB2tcfBoXn8bFp3HxlXVcBlVcRERE8tBpMRERiU7FRUREolNxERGR6FRcREQkOhUXERGJTsVFRESiU3EREZHoVFxERCQ6FRcREYlOxUVERKJTcRERkehUXEREJDoVFxERiU7FRUREolNxERGR6JIUF5J3kvwNyeMk3yZ5c4o8ioTkscxXH8nvp86rCEi2knyR5CGSB0g+TnJU6rxSI3kdyZdJHiH5Fsm/Tp1TEZCcSPK56v6lh+TXU+eUGsn7SHaSPElyYyM+s+HFheQ8AGsALAJwMYAvAnin0XkUjZmNOf0FYAqAEwCeSZxWUTwB4EMAnwXQBmA2gHuTZpRYtbhuAfACgIkAFgN4muQ1SRMrhh8AOIXKdnQXgCdJfj5tSsntA/AIgB836gNTHLmsAvCwmf2Xmf3ezN43s/cT5FFkf4vKzvQ/UydSENMAbDKzT83sAIB/BzDSdxafA3ApgMfMrM/MXgbwKoC706aVFsmLAHwFwINmdszMXgHwPEb4uJjZs2a2GcDBRn1mQ4sLyRYAswBMrh7G762e4hjdyDxKoB3Av5ieQX3aOgB3kryQ5GUAbkOlwIxkPEvsjxudSMFcA6DPzHafEdsF/THScI0+cpkC4FxU/jK/GZVTHDcAeKDBeRQWyT9C5bRPR+pcCmQ7KjuHjwHsBdAJYHPSjNJ7A5Wj278neS7JP0dlvbkwbVrJjQFwJBM7gsopeGmgRheXE9V/v29m+82sF8A/Abi9wXkU2TcBvGJme1InUgQkzwHwcwDPArgIwCQAE1Dp241YZvY7AAsA/CWAAwC+A2ATKsV3JDsGYGwmNhbA0QS5jGgNLS5mdgiVlV+ne87um9BRy5kmArgCwONmdtLMDgLYAP1BAjP7HzObbWaXmNmtAKYD+GXqvBLbDWAUyavPiM0E8HqifEasFA39DQC+TfIzJCcAWIrKFS8jHsk/BXAZdJXYH1SPbvcAuIfkKJLjUelJ7UqbWXok/4TkBdVe1N+hcjXdxsRpJWVmx1E5yn2Y5EUkvwBgPoCfpM0sreq2cwGAFgAt1fWmrpfzpygu3wXwK1T+wvgNgB0A/iFBHkXUDuBZM9MhfK2/AfAXAD4C8BaA/wWwLGlGxXA3gP2o9F7+DMA8MzuZNqVCuBfAaFTG5WcA7jGzkX7k8gAqbYkVAL5R/X9de93UBUkiIhKbbv8iIiLRqbiIiEh0Ki4iIhKdiouIiEQ3qEvRJk2aZK2trUP6oDfffDOI9fX1BbHrr79+SO/f3d2N3t5e75YYdZd3XD744IMg5o3B4cOHg9iJEyeCWEtLSxCbMWNGzet3330XBw8eLPS4vPfee0EsOwaXXHJJsMyUKVOCmDcmnq6url4zm5xr4cjyjstbb70VxLLry7XXXhsrLQDlGBdvm9m3b1/N64MHw1tojRkzJohdddVVuXIrw7jk8dprrwUxb5vx1itvuf7GZVDFpbW1FZ2dnYP5lj+YM2dOEPN2okN9/1mzZg3p+2LIOy5r164NYt4YbN4c3tlk165wWoe3sWzdurXm9S233DJgXvWSd1yWLl0axLJjsHDhwlzfN378+Fy5kezJtWAd5B2XBQsWBLHs+rJt27ZYaQEox7h428zKlStrXm/cuDFYxtsHeduapwzjkve9srxtJrsfOdty/Y2LTouJiEh0Ki4iIhJdXab/b9myJYht3749iD300EP1+PhS8Q41vdNneU+pZd8vbw8ipZ07dw64jHeawzslFPs0UaN0d3cHMW87yiLDdtrMmTODWJ4xLgvvFGl2rLx9i7cOeTHv/csqOy49PeFZLC+WZ98yEB25iIhIdCouIiISnYqLiIhEp+IiIiLR1aWhn7dR713H38y8eRme7DX7gN/wLWvzOqutrS2IZa/H9xqvXoPRGxNvfkPReA1Uz+zZs2tee/MWmmW9APJf6NDe3l7z2tuGvDFupgsdPPfff/+Ay2TXKcBfrwZLRy4iIhKdiouIiESn4iIiItGpuIiISHR1aeh7jTNv1rDXyG0Ww5k97s3G93g33Svj7GIv5xtuuKHmtdfY9Rr6se4e22h5887+zvPc3LLM8s4Kz7PeD3aGeZF5v2PvgiFv9n2j6MhFRESiU3EREZHoVFxERCQ6FRcREYmuYQ19r2HpNa69BmUZm7Rezt5s4LxNfq95X4aZ53nkaUB7j2zYs2dPECvjugL4zWbvIpgJEybUvPZmYHvrmXdBRBnGqtln0A+V9/v0YlOnTq157TX463VhlY5cREQkOhUXERGJTsVFRESiU3EREZHo6tLQ9xqFXkPWa+QuW7YsiO3YsSOIFX12vzcGXlPeewZ6MzfvvQbtLbfcEsSyj23wmpXexR/e2JWhce3xxioby7sdeLO3vbEqmrw/35EjR2pe5729vndr/jLwxsW7OCj7eAJvm/EeZ5H3LiH90ZGLiIhEp+IiIiLRqbiIiEh0Ki4iIhJdXRr63u2vvUa912j1Grde47HoDX2P11QdN25cEPOead0svN+5NwbZsfLWi+xt+QG/OVnWpq0nu95765Q3BmVo3nu8Oxd428djjz1W8/q5557L9V5l3I8MhrdtZdXrUQQ6chERkehUXEREJDoVFxERiU7FRUREomtYQ99ryHqNR28mujertIy8GbQdHR1BrJme9Z3l/Wze7zx7a3mvMTl//vwg5jW4y8r7WbKzzL2Z6N561kyNa+/ihOxYebPxvf1Ns8v+3r3HOOzatSuIeevVYPdLOnIREZHoVFxERCQ6FRcREYlOxUVERKKjmeVfmPwIQPgQ5mKYamaTU3ywxsWncfFpXHwaF19Zx2VQxUVERCQPnRYTEZHoVFxERCQ6FRcREYlOxUVERKJTcRERkehUXEREJDoVFxERiU7FRUREolNxERGR6FRcREQkOhUXERGJTsVFRESiU3EREZHoVFxERCS6hhYXkueTfIpkD8mjJHeQvK2RORQVyadJ7if5McndJL+VOqciIXk1yU9JPp06l6Igua06JseqX2+mzqkoSN5J8jckj5N8m+TNqXNK6Yx15PRXH8nv1/MzR9Xzzc/yee8BmA3gXQC3A9hEcoaZdTc4l6J5FMD/NbOTJD8HYBvJHWbWlTqxgvgBgF+lTqKA7jOzf06dRJGQnAdgDYD/A+CXAD6bNqP0zGzM6f+TvAjABwCeqednNvTIxcyOm9lKM+s2s9+b2QsA9gC4qZF5FJGZvW5mJ0+/rH5dmTClwiB5J4DDAP4jdS5SCqsAPGxm/1Xdz7xvZu+nTqpA/hbAhwD+s54fkrTnQnIKgGsAvJ4yj6Ig+QTJTwC8AWA/gBcTp5QcybEAHgbwndS5FNSjJHtJvkpyTupkUiPZAmAWgMkk3yK5l+TjJEenzq1A2gH8i9X5McTJigvJcwH8FECHmb2RKo8iMbN7AVwM4GYAzwI42f93jAjfBfCUmb2XOpECWg5gOoDLAPwIwL+SHOlHu1MAnIvKX+c3A2gDcAOAB1ImVRQk/wiVtkRHvT8rSXEheQ6AnwA4BeC+FDkUlZn1mdkrAC4HcE/qfFIi2QZgLoDHUudSRGb232Z21MxOmlkHgFdR6WOOZCeq/37fzPabWS+Af4LG5bRvAnjFzPbU+4Ma3dAHSQJ4CpW/MG43s981OoeSGAX1XOYAaAXwbmW1wRgALSSvN7MbE+ZVVAaAqZNIycwOkdyLylhI6JsAVjfig1IcuTwJ4DoAXzazEwMtPBKQ/Ez10skxJFtI3grgawBeTp1bYj9CpcC2Vb9+CODfANyaMqkiIDme5K0kLyA5iuRdAL4I4OepcyuADQC+Xd2uJgBYCuCFxDklR/JPUTmFWterxE5r6JELyakAlqDSSzhQ/WsUAJaY2U8bmUvBGCqnwH6ISsHvAbDUzLYkzSoxM/sEwCenX5M8BuBTM/soXVaFcS6ARwB8DkAfKheBLDAzzXWp9OkmAdgN4FMAmwD8Q9KMiqEdwLNmdrQRH8Y6XzAgIiIjkG7/IiIi0am4iIhIdCouIiISnYqLiIhEN6irxSZNmmStra0DLnf48OEg9sEHHwSxq666Koi1tLQMJqU/6O7uRm9vb5Jr/L1xOXXqVLCcNwYHDx4MYt4YjB8/PohdcsklQezCCy+seV20cclr3759Na8//PDDYJkZM2YEsbzrT1dXV6+ZTR5ScsPkjUvebaavr6/m9YkT+a7m98bqvPPOC2JFG5e8Rtr64smuG0C4Dnnj4u1b8v4e+huXQRWX1tZWdHZ2Drjcli3hFbSPPRZOst68eXMQ837QPGbNmjWk74vBG5fu7u5gubVr1waxjRs3BjFvDBYsWBDEFi5cGMTa2tpqXhdtXPJauXJlzWtv7LZu3RrE8q4/JHuGlFgE3rjk3WayRWjXrl25PvP5559388gq2rjkNdLWF4/3B0p2HLxx+dKXvhTEvP2Sp79x0WkxERGJTsVFRESiq8sM/fb29iDmHX56h15Lly6tR0oN550W27ZtWxDzfl7v8HbdunVBzBvT7GmxMvB+3uy6kfccsPdeQz3V2kgbNmwIYtu3bw9i48aNq3n90EMPBcvMmTMniA21l1EW2W3L+52XYT3Ia+fOnUHMO02e3Q95Y+Dtl2LQkYuIiESn4iIiItGpuIiISHQqLiIiEl1dGvpe89BrGnlzN5qloe81Vb0mnHdRQ/aafSBs5AL++JVRnosavDlR3nrmjbv3vUXjXYjhrS/Z5byxa6bGtccbl+zFD94coWbS0xNOL8mzDuVp+seiIxcREYlOxUVERKJTcRERkehUXEREJLphN/S9ZpDXWPKajPVqJJVJ3maz18Qs46xr78Z5HR0dQSzbkPV+1iNHjgSxMt6h4Gy8pm025v28zb5dedtCVrNc7HI28+fPD2JTp04NYtkbonr7G2+svHVosPsbHbmIiEh0Ki4iIhKdiouIiESn4iIiItENu6HvNXm8GeYer2FZ1lumD5XX4PaatN5M7DLMPM/K22zO3rnAGyfPDTfcMMiMisH7/eZpoC5atKgO2RSbt4/ImjZtWhCbOXNmEFu1alUQ85rlZTDUdd+7oCbvI0P6oyMXERGJTsVFRESiU3EREZHoVFxERCS6ht1y37u1vHcb+WZu3nu8scpzq3XAb7B5t5wvEu9iD69Bm71YwZuN781ILmsz1lvvvdujZ2dce/KuP2WV54Kh+++/P9d7ecuVYR3ytpmHHnooiGX3EV6j3lvPYtzhQEcuIiISnYqLiIhEp+IiIiLRqbiIiEh0dWnoe7ON161bF8S8hn7eZ4Jnm1CnTp0aRIb15zXcss/5BoBDhw4FMW82utfQLuOt1b3fpXexR3b8JkyYECxT9IsXBiPv+tLe3l7z2pt13kzNe493IUueBnTe/VIZtitvO/IudMjuJ731LO8dVQZLRy4iIhKdiouIiESn4iIiItGpuIiISHR1aeh7Mz69JpnXePRuI+81r7LN3JMnT+bOrxG8xln2ufCD4c0a9sa5WWSbr97FH83083uz6rPNeyC8sKOMj10YrjyPpPCa1F7z3tuuBvus+CLL7ocaeRGMjlxERCQ6FRcREYlOxUVERKJTcRERkehoZvkXJj8CED74vhimmtnkFB+scfFpXHwaF5/GxVfWcRlUcREREclDp8VERCQ6FRcREYlOxUVERKJTcRERkehUXEREJDoVFxERiU7FRUREolNxERGR6FRcREQkOhUXERGJTsVFRESiU3EREZHoVFxERCQ6FRcREYmu4cWFZCvJF0keInmA5OMkRzU6j6IheR3Jl0keIfkWyb9OnVNRkJxI8jmSx0n2kPx66pxSI3kfyU6SJ0luTJ1PUZA8n+RT1fXkKMkdJG9LnVcRkHya5H6SH5PcTfJb9fy8FEcuTwD4EMBnAbQBmA3g3gR5FEa1uG4B8AKAiQAWA3ia5DVJEyuOHwA4BWAKgLsAPEny82lTSm4fgEcA/Dh1IgUzCsB7qOxXxgF4EMAmkq0JcyqKRwG0mtlYAH8F4BGSN9Xrw1IUl2kANpnZp2Z2AMC/AxjpO4rPAbgUwGNm1mdmLwN4FcDdadNKj+RFAL4C4EEzO2ZmrwB4HiN8bMzsWTPbDOBg6lyKxMyOm9lKM+s2s9+b2QsA9gCo2060LMzsdTM7efpl9evKen1eiuKyDsCdJC8keRmA21ApMCMZzxL740YnUkDXAOgzs91nxHZBf5BIDiSnoLIOvZ46lyIg+QTJTwC8AWA/gBfr9Vkpist2VHYMHwPYC6ATwOYEeRTJG6icKvx7kueS/HNUDusvTJtWIYwBcCQTOwLg4gS5SImQPBfATwF0mNkbqfMpAjO7F5Vt52YAzwI42f93DF1DiwvJcwD8HJUf6iIAkwBMALCmkXkUjZn9DsACAH8J4ACA7wDYhErxHemOARibiY0FcDRBLlIS1X3NT1Dp1d2XOJ1CqZ56fwXA5QDuqdfnNPrIZSKAKwA8bmYnzewggA0Abm9wHoVjZv9jZrPN7BIzuxXAdAC/TJ1XAewGMIrk1WfEZkKnOeQsSBLAU6hcAPKV6h9vEhqFZum5mFkvKs21e0iOIjkeQDsq59BHNJJ/QvKCai/q71C5mm5j4rSSM7PjqBzpPkzyIpJfADAflb9KR6zq9nMBgBYALdV1Z8Rf0l/1JIDrAHzZzE6kTqYISH6G5J0kx5BsIXkrgK8BeLlen5mi5/I3AP4CwEcA3gLwvwCWJcijaO5GpcH2IYA/AzDvjCs7Rrp7AYxGZWx+BuAeMxvpRy4PADgBYAWAb1T//0DSjAqA5FQAS1CZ5nCA5LHq112JU0vNUDkFthfAIQD/CGCpmW2p1wfSzOr13iIiMkLp9i8iIhKdiouIiESn4iIiItGpuIiISHSDunRx0qRJ1traOuBy3d3dQWz06NFB7ODB8LZIF18cTry+4oorcn1mb2+vdxuVuss7Lt7Pu2/fviDmvZc3LnmUYVw++eSTIJZdh84777xgGW9MpkyZkiu3rq6uXjObnGvhyPKOi+fUqVM1r1977bVc3zdjxowg5o1pGcbF22b2799f8/rKK8PpG+PHjx9ybkUbl76+vmC5AwcOBLGPP/645rW3rbW0tASx6dOnB7GxY7Nzmfsfl0EVl9bWVnR2dg643MKFC4NYW1tbENu4cWMQmzNnThBbu3btgJ85a9asAZepl7zj4v28K1euDGLr168PYt645FGGcdm5c2cQy65D3k7HG5OlS5fmyo1kT64F6yDvuHiyRXfatGm5vu/5559388gqw7h428yqVatqXn/ve98Llpk/f/6QcyvauBw6dChYbs2a8EYnL730Us3rX//618Ey3h9pTzzxRBCbO3duEOtvXHRaTEREolNxERGR6Opyuwjv3KZ36sNbzjt15J3qGOo565Q2bw5v/tzTEx5V5j1d2Cy80xy7du3q9zUAbNkSTi5esGBBECvjunI2Xj+zmR0+fDiIedtR9pSXtx4004Txd955J4h1dXUFsXnz5vX7GghPnQHA8uXLc71/f3TkIiIi0am4iIhIdCouIiISnYqLiIhEV5eGvtdM8+aqeI1Wr8nfLA1Zb66Pd6FDR0dHEPOa3mUcl23btgUxrzF///3317z2fn5vPMvKa1x764Y3DlmzZ88OYmVcVwB/f5Bnzlzeba2s69BNN90UxLzGfJZ3IcCmTZuC2JIlS4aW2Bl05CIiItGpuIiISHQqLiIiEp2Ki4iIRFeXhr7XJPOatu3t7UHMm53eLLw7DXgNbq/56n2vN1O5WeS5Wal3d4Oy8tb7ZcuWNT6REvC2hewFEd4dHcp6UcNwZBv43t2ib7zxxiC2ePHiYX+2jlxERCQ6FRcREYlOxUVERKJTcRERkegaNkN/5syZQcx7YuVwHkVadN7P5jX0Pd6YlnHGcd5HB2QbtN7YeTPR8z7ts2i8JnWep7J6d3No9tvye+t4dvy8daOZ9y1nk31csffk0hUrVgSxCRMmDPuzdeQiIiLRqbiIiEh0Ki4iImWUmNEAAAHISURBVBKdiouIiERXl4a+x2tce03qvA3ukWbRokVBzGtUl3HW/rhx44JY9mfzZux7t6lvplnYXuM6z8/XTGPg8S5kyV7I4V3oIMC8efOC2PLly4PYHXfcMezP0pGLiIhEp+IiIiLRqbiIiEh0Ki4iIhLdsBv6eZuq3nLNPpM4K+9z0j179uwJYt5jDLJjeurUqXzJJeTdqSHPhQneeHoXiTSTPM367du3BzFvWytr4z/P73jHjh25Yt57Ff0uF2ezZs2aIHbo0KGa15s2bQqW8bajGHTkIiIi0am4iIhIdCouIiISnYqLiIhEN+yGvncba69B5N0+fN26dcP9+FIZznPSvUcWzJ8/P4hlfx8tLS35kkvIu9189kIH784N3ng2+23Vs9uRd2t57yKRZmroe+tL9gKQvHf68C4cKetdQlavXh3EsvviuXPnBsusX7++LvnoyEVERKJTcRERkehUXEREJDoVFxERiY5mln9h8iMAPfVLZ1immtnkFB+scfFpXHwaF5/GxVfWcRlUcREREclDp8VERCQ6FRcREYlOxUVERKJTcRERkehUXEREJDoVFxERiU7FRUREolNxERGR6FRcREQkuv8PQ1cvY2pV05oAAAAASUVORK5CYII=\n,
text/plain: [
<Figure size 432x288 with 24 Axes>
]
},
metadata: {},
output_type: display_data
}
],
source: [
figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(6, 4))\n,
\n,
for item in zip(axes.ravel(), digits.images, digits.target):\n,
axes, image, target = item \n,
axes.imshow(image, cmap=plt.cm.gray_r)\n,
axes.set_xticks([]) # remove x-axis tick marks\n,
axes.set_yticks([]) # remove y-axis tick marks\n,
axes.set_title(target)\n,
plt.tight_layout()
]
},
{
cell_type: code,
execution_count: 44,
metadata: {},
outputs: [],
source: [
from sklearn.model_selection import train_test_split\n,
X_train, X_test, y_train, y_test = train_test_split(\n,
digits.data, digits.target, random_state=11, test_size=0.20) \n,
# random_state for reproducibility\n
]
},
{
cell_type: code,
execution_count: 45,
metadata: {},
outputs: [
{
data: {
text/plain: [
(1437, 64)
]
},
execution_count: 45,
metadata: {},
output_type: execute_result
}
],
source: [
X_train.shape
]
},
{
cell_type: code,
execution_count: 46,
metadata: {},
outputs: [
{
data: {
text/plain: [
KNeighborsClassifier(algorithm=auto, leaf_size=30, metric=minkowski,\n,
metric_params=None, n_jobs=None, n_neighbors=5, p=2,\n,
weights=uniform)
]
},
execution_count: 46,
metadata: {},
output_type: execute_result
}
],
source: [
from sklearn.neighbors import KNeighborsClassifier\n,
knn = KNeighborsClassifier()\n,
knn.fit(X=X_train, y=y_train)\n
]
},
{
cell_type: code,
execution_count: 47,
metadata: {
scrolled: true
},
outputs: [
{
data: {
text/plain: [
array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 3, 6])
]
},
execution_count: 47,
metadata: {},
output_type: execute_result
}
],
source: [
predicted = knn.predict(X=X_test)\n,
expected = y_test\n,
\n,
predicted[:20]\n,
expected[:20]\n
]
},
{
cell_type: code,
execution_count: 48,
metadata: {
scrolled: true
},
outputs: [
{
data: {
text/plain: [
array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 5, 6])
]
},
execution_count: 48,
metadata: {},
output_type: execute_result
}
],
source: [
predicted[:20]
]
},
{
cell_type: code,
execution_count: 49,
metadata: {},
outputs: [
{
data: {
text/plain: [
array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 3, 6])
]
},
execution_count: 49,
metadata: {},
output_type: execute_result
}
],
source: [
expected[:20]
]
},
{
cell_type: code,
execution_count: 50,
metadata: {},
outputs: [],
source: [
wrong = [(p, e) for (p, e) in zip(predicted, expected) if p != e]
]
},
{
cell_type: code,
execution_count: 51,
metadata: {},
outputs: [
{
data: {
text/plain: [
[(5, 3), (8, 9), (4, 9), (7, 3), (7, 4)]
]
},
execution_count: 51,
metadata: {},
output_type: execute_result
}
],
source: [
wrong
]
},
{
cell_type: code,
execution_count: 59,
metadata: {},
outputs: [
{
name: stdout,
output_type: stream,
text: [
Model accuracy:98.61\%\n
]
}
],
source: [
print(\Model accuracy:\%.2f\%\%\ \%(knn.score(X_test,y_test)*100))
]
},
{
cell_type: code,
execution_count: null,
metadata: {},
outputs: [],
source: []
},
{
cell_type: code,
execution_count: null,
metadata: {},
outputs: [],
source: []
}
],
metadata: {
kernelspec: {
display_name: Python 3,
language: python,
name: python3
},
language_info: {
codemirror_mode: {
name: ipython,
version: 3
},
file_extension: .py,
mimetype: text/x-python,
name: python,
nbconvert_exporter: python,
pygments_lexer: ipython3,
version: 3.7.3
}
},
nbformat: 4,
nbformat_minor: 2
}
CATEGORIES
Economics
Nursing
Applied Sciences
Psychology
Science
Management
Computer Science
Human Resource Management
Accounting
Information Systems
English
Anatomy
Operations Management
Sociology
Literature
Education
Business & Finance
Marketing
Engineering
Statistics
Biology
Political Science
Reading
History
Financial markets
Philosophy
Mathematics
Law
Criminal
Architecture and Design
Government
Social Science
World history
Chemistry
Humanities
Business Finance
Writing
Programming
Telecommunications Engineering
Geography
Physics
Spanish
ach
e. Embedded Entrepreneurship
f. Three Social Entrepreneurship Models
g. Social-Founder Identity
h. Micros-enterprise Development
Outcomes
Subset 2. Indigenous Entrepreneurship Approaches (Outside of Canada)
a. Indigenous Australian Entrepreneurs Exami
Calculus
(people influence of
others) processes that you perceived occurs in this specific Institution Select one of the forms of stratification highlighted (focus on inter the intersectionalities
of these three) to reflect and analyze the potential ways these (
American history
Pharmacology
Ancient history
. Also
Numerical analysis
Environmental science
Electrical Engineering
Precalculus
Physiology
Civil Engineering
Electronic Engineering
ness Horizons
Algebra
Geology
Physical chemistry
nt
When considering both O
lassrooms
Civil
Probability
ions
Identify a specific consumer product that you or your family have used for quite some time. This might be a branded smartphone (if you have used several versions over the years)
or the court to consider in its deliberations. Locard’s exchange principle argues that during the commission of a crime
Chemical Engineering
Ecology
aragraphs (meaning 25 sentences or more). Your assignment may be more than 5 paragraphs but not less.
INSTRUCTIONS:
To access the FNU Online Library for journals and articles you can go the FNU library link here:
https://www.fnu.edu/library/
In order to
n that draws upon the theoretical reading to explain and contextualize the design choices. Be sure to directly quote or paraphrase the reading
ce to the vaccine. Your campaign must educate and inform the audience on the benefits but also create for safe and open dialogue. A key metric of your campaign will be the direct increase in numbers.
Key outcomes: The approach that you take must be clear
Mechanical Engineering
Organic chemistry
Geometry
nment
Topic
You will need to pick one topic for your project (5 pts)
Literature search
You will need to perform a literature search for your topic
Geophysics
you been involved with a company doing a redesign of business processes
Communication on Customer Relations. Discuss how two-way communication on social media channels impacts businesses both positively and negatively. Provide any personal examples from your experience
od pressure and hypertension via a community-wide intervention that targets the problem across the lifespan (i.e. includes all ages).
Develop a community-wide intervention to reduce elevated blood pressure and hypertension in the State of Alabama that in
in body of the report
Conclusions
References (8 References Minimum)
*** Words count = 2000 words.
*** In-Text Citations and References using Harvard style.
*** In Task section I’ve chose (Economic issues in overseas contracting)"
Electromagnetism
w or quality improvement; it was just all part of good nursing care. The goal for quality improvement is to monitor patient outcomes using statistics for comparison to standards of care for different diseases
e a 1 to 2 slide Microsoft PowerPoint presentation on the different models of case management. Include speaker notes... .....Describe three different models of case management.
visual representations of information. They can include numbers
SSAY
ame workbook for all 3 milestones. You do not need to download a new copy for Milestones 2 or 3. When you submit Milestone 3
pages):
Provide a description of an existing intervention in Canada
making the appropriate buying decisions in an ethical and professional manner.
Topic: Purchasing and Technology
You read about blockchain ledger technology. Now do some additional research out on the Internet and share your URL with the rest of the class
be aware of which features their competitors are opting to include so the product development teams can design similar or enhanced features to attract more of the market. The more unique
low (The Top Health Industry Trends to Watch in 2015) to assist you with this discussion.
https://youtu.be/fRym_jyuBc0
Next year the $2.8 trillion U.S. healthcare industry will finally begin to look and feel more like the rest of the business wo
evidence-based primary care curriculum. Throughout your nurse practitioner program
Vignette
Understanding Gender Fluidity
Providing Inclusive Quality Care
Affirming Clinical Encounters
Conclusion
References
Nurse Practitioner Knowledge
Mechanics
and word limit is unit as a guide only.
The assessment may be re-attempted on two further occasions (maximum three attempts in total). All assessments must be resubmitted 3 days within receiving your unsatisfactory grade. You must clearly indicate “Re-su
Trigonometry
Article writing
Other
5. June 29
After the components sending to the manufacturing house
1. In 1972 the Furman v. Georgia case resulted in a decision that would put action into motion. Furman was originally sentenced to death because of a murder he committed in Georgia but the court debated whether or not this was a violation of his 8th amend
One of the first conflicts that would need to be investigated would be whether the human service professional followed the responsibility to client ethical standard. While developing a relationship with client it is important to clarify that if danger or
Ethical behavior is a critical topic in the workplace because the impact of it can make or break a business
No matter which type of health care organization
With a direct sale
During the pandemic
Computers are being used to monitor the spread of outbreaks in different areas of the world and with this record
3. Furman v. Georgia is a U.S Supreme Court case that resolves around the Eighth Amendments ban on cruel and unsual punishment in death penalty cases. The Furman v. Georgia case was based on Furman being convicted of murder in Georgia. Furman was caught i
One major ethical conflict that may arise in my investigation is the Responsibility to Client in both Standard 3 and Standard 4 of the Ethical Standards for Human Service Professionals (2015). Making sure we do not disclose information without consent ev
4. Identify two examples of real world problems that you have observed in your personal
Summary & Evaluation: Reference & 188. Academic Search Ultimate
Ethics
We can mention at least one example of how the violation of ethical standards can be prevented. Many organizations promote ethical self-regulation by creating moral codes to help direct their business activities
*DDB is used for the first three years
For example
The inbound logistics for William Instrument refer to purchase components from various electronic firms. During the purchase process William need to consider the quality and price of the components. In this case
4. A U.S. Supreme Court case known as Furman v. Georgia (1972) is a landmark case that involved Eighth Amendment’s ban of unusual and cruel punishment in death penalty cases (Furman v. Georgia (1972)
With covid coming into place
In my opinion
with
Not necessarily all home buyers are the same! When you choose to work with we buy ugly houses Baltimore & nationwide USA
The ability to view ourselves from an unbiased perspective allows us to critically assess our personal strengths and weaknesses. This is an important step in the process of finding the right resources for our personal learning style. Ego and pride can be
· By Day 1 of this week
While you must form your answers to the questions below from our assigned reading material
CliftonLarsonAllen LLP (2013)
5 The family dynamic is awkward at first since the most outgoing and straight forward person in the family in Linda
Urien
The most important benefit of my statistical analysis would be the accuracy with which I interpret the data. The greatest obstacle
From a similar but larger point of view
4 In order to get the entire family to come back for another session I would suggest coming in on a day the restaurant is not open
When seeking to identify a patient’s health condition
After viewing the you tube videos on prayer
Your paper must be at least two pages in length (not counting the title and reference pages)
The word assimilate is negative to me. I believe everyone should learn about a country that they are going to live in. It doesnt mean that they have to believe that everything in America is better than where they came from. It means that they care enough
Data collection
Single Subject Chris is a social worker in a geriatric case management program located in a midsize Northeastern town. She has an MSW and is part of a team of case managers that likes to continuously improve on its practice. The team is currently using an
I would start off with Linda on repeating her options for the child and going over what she is feeling with each option. I would want to find out what she is afraid of. I would avoid asking her any “why” questions because I want her to be in the here an
Summarize the advantages and disadvantages of using an Internet site as means of collecting data for psychological research (Comp 2.1) 25.0\% Summarization of the advantages and disadvantages of using an Internet site as means of collecting data for psych
Identify the type of research used in a chosen study
Compose a 1
Optics
effect relationship becomes more difficult—as the researcher cannot enact total control of another person even in an experimental environment. Social workers serve clients in highly complex real-world environments. Clients often implement recommended inte
I think knowing more about you will allow you to be able to choose the right resources
Be 4 pages in length
soft MB-920 dumps review and documentation and high-quality listing pdf MB-920 braindumps also recommended and approved by Microsoft experts. The practical test
g
One thing you will need to do in college is learn how to find and use references. References support your ideas. College-level work must be supported by research. You are expected to do that for this paper. You will research
Elaborate on any potential confounds or ethical concerns while participating in the psychological study 20.0\% Elaboration on any potential confounds or ethical concerns while participating in the psychological study is missing. Elaboration on any potenti
3 The first thing I would do in the family’s first session is develop a genogram of the family to get an idea of all the individuals who play a major role in Linda’s life. After establishing where each member is in relation to the family
A Health in All Policies approach
Note: The requirements outlined below correspond to the grading criteria in the scoring guide. At a minimum
Chen
Read Connecting Communities and Complexity: A Case Study in Creating the Conditions for Transformational Change
Read Reflections on Cultural Humility
Read A Basic Guide to ABCD Community Organizing
Use the bolded black section and sub-section titles below to organize your paper. For each section
Losinski forwarded the article on a priority basis to Mary Scott
Losinksi wanted details on use of the ED at CGH. He asked the administrative resident