Pregnancy and lactation - Physiology
An Overview on pregnancy and lactation PREGNANCY AND LACTATION AN OVERVIEW Course Outline Conception: maturation, ovulation, fertilization, implantation, implantation Early maturation of the embryo Functions of the Placenta Endocrinology of pregnancy Maternal Physiological changes in pregnancy Parturition Lactation Abnormalities of pregnancy, parturition and lactation MATURATION OF THE OVUM While still in the ovary, the ovum is in the primary oocyte stage. Shortly before it is released from the ovarian follicle, its nucleus divides by meiosis and a first polar body is expelled from the nucleus of the oocyte. The primary oocyte then becomes the secondary oocyte. In this process, each of the 23 pairs of chromosomes loses one of its partners, which becomes incorporated in a polar body that is expelled. This leaves 23 unpaired chromosomes in the secondary oocyte. It is at this time that the ovum, still in the secondary oocyte stage, is ovulated into the abdominal cavity. Then, almost immediately, it enters the fimbriated end of one of the fallopian tubes When ovulation occurs, the ovum, along with a hundred or more attached granulosa cells that constitute the corona radiata, is expelled directly into the peritoneal cavity and must then enter one of the fallopian tubes (also called uterine tubes) to reach the cavity of the uterus. The fimbriated ends of each fallopian tube fall naturally around the ovaries. Maturation of the Ovum The inner surfaces of the fimbriated tentacles are lined with ciliated epithelium, and the cilia are activated by estrogen from the ovaries, which causes the cilia to beat toward the opening, or ostium, of the involved fallopian tube. One can actually see a slow fluid current flowing toward the ostium. By this means, the ovum enters one of the fallopian tubes. Although one might suspect that many ova fail to enter the fallopian tubes, conception studies suggest that up to 98 percent succeed in this task. Indeed, in some recorded cases, women with one ovary removed and the opposite fallopian tube removed have had several children with relative ease of conception, thus demonstrating that ova can even enter the opposite fallopian tube. Fertilization of the ovum After the male ejaculates semen into the vagina during intercourse, a few sperm are transported within 5 to 10 minutes upward from the vagina and through the uterus and fallopian tubes to the ampullae of the fallopian tubes near the ovarian ends of the tubes. This transport of the sperm is aided by contractions of the uterus and fallopian tubes stimulated by prostaglandins in the male seminal fluid and also by oxytocin released from the posterior pituitary gland of the female during her orgasm. Of the almost half a billion sperm deposited in the vagina, a few thousand succeed in reaching each ampulla. Fertilization of the ovum normally takes place in the ampulla of one of the fallopian tubes soon after both the sperm and the ovum enter the ampulla. But before a sperm can enter the ovum, it must first penetrate the multiple layers of granulosa cells attached to the outside of the ovum (the corona radiata) and then bind to and penetrate the zona pellucida surrounding the ovum. FERTILIZATION OF THE OVUM Once a sperm has entered the ovum (which is still in the secondary oocyte stage of development), the oocyte divides again to form the mature ovum plus a second polar body that is expelled. The mature ovum still carries in its nucleus (now called the female pronucleus) 23 chromosomes. One of these chromosomes is the female chromosome, know In the meantime, the fertilizing sperm has also changed. On entering the ovum, its head swells to form a male pronucleus. Later, the 23 unpaired chromosomes of the male pronucleus and the 23 unpaired chromosomes of the female pronucleus align themselves to re-form a complete complement of 46 chromosomes (23 pairs) in the fertilized ovum . Transport of the Fertilized Ovum in the Fallopian Tube After fertilization has occurred, an additional 3 to 5 days is normally required for transport of the fertilized ovum through the remainder of the fallopian tube into the cavity of the uterus. This transport is effected mainly by a feeble fluid current in the tube resulting from epithelial secretion plus action of the ciliated epithelium that lines the tube; the cilia always beat toward the uterus. Weak contractions of the fallopian tube may also aid the ovum passage The fallopian tubes are lined with a rugged, cryptoid surface that impedes passage of the ovum despite the fluid current. Also, the isthmus of the fallopian tube (the last 2 centimeters before the tube enters the uterus) remains spastically contracted for about the first 3 days after ovulation. After this time, the rapidly increasing progesterone secreted by the ovarian corpus luteum first increasing progesterone receptors on the fallopian tube smooth muscle cells; then the progesterone activates the receptors, exerting a tubular relaxing effect that allows entry of the ovum into the uterus. This delayed transport of the fertilized ovum through the fallopian tube allows several stages of cell division to occur before the dividing ovum—now called a blastocyst, with about 100 cells—enters the uterus. During this time, the fallopian tube secretory cells produce large quantities of secretions used for the nutrition of the developing blastocyst. Implantation of the Blastocyst in the Uterus After reaching the uterus, the developing blastocyst usually remains in the uterine cavity an additional 1 to 3 days before it implants in the endometrium; thus, implantation ordinarily occurs on about the fifth to seventh day after ovulation. Before implantation, the blastocyst obtains its nutrition from the uterine endometrial secretions, called “uterine milk.” Implantation results from the action of trophoblast cells that develop over the surface of the blastocyst. These cells secrete proteolytic enzymes that digest and liquefy the adjacent cells of the uterine endometrium. Some of the fluid and nutrients released are actively transported by the same trophoblast cells into the blastocyst, adding more sustenance for growth. Once implantation has taken place, the trophoblast cells and other adjacent cells (from the blastocyst and the uterine endometrium) proliferate rapidly, forming the placenta and the various membranes of pregnancy. Failure to Reject the “Fetal Graft” It should be noted that the fetus and the mother are two genetically distinct individuals, and the fetus is in effect a transplant of foreign tissue in the mother. However, the transplant is tolerated, and the rejection reaction that is characteristically produced when other foreign tissues are transplanted fails to occur. The way the “fetal graft ” is protected is unknown. However, one explanation may be that the placental trophoblast, which separates maternal and fetal tissues, does not express the polymorphic class I and class II MHC genes and instead expresses HLA-G , a nonpolymorphic gene. Therefore, antibodies against the fetal proteins do not develop. (Look up the blood placenta barrier) Early Nutrition of the Embryo We pointed out that the progesterone secreted by the ovarian corpus luteum during the latter half of each monthly sexual cycle has an effect on the uterine endometrium, converting the endometrial stromal cells into large swollen cells containing extra quantities of glycogen, proteins, lipids, and even some minerals necessary for development of the conceptus (the embryo and its adjacent parts or associated membranes). Then, when the conceptus implants in the endometrium, the continued secretion of progesterone causes the endometrial cells to swell further and to store even more nutrients. These cells are now called decidual cells, and the total mass of cells is called the decidua. As the trophoblast cells invade the decidua, digesting and imbibing it, the stored nutrients in the decidua are used by the embryo for growth and development. During the first week after implantation, this is the only means by which the embryo can obtain nutrients; the embryo continues to obtain at least some of its nutrition in this way for up to 8 weeks, although the placenta also begins to provide nutrition after about the 16th day beyond fertilization (a little more than 1 week after implantation). Function of the placenta While the trophoblastic cords from the blastocyst are attaching to the uterus, blood capillaries grow into the cords from the vascular system of the newly forming embryo. About 21 days after fertilization, blood also begins to be pumped by the heart of the human embryo. Simultaneously, blood sinuses supplied with blood from the mother develop around the outsides of the trophoblastic cords. The trophoblast cells send out more and more projections, which become placental villi into which fetal capillaries grow. Thus, the villi, carrying fetal blood, are surrounded by sinuses that contain maternal blood. Note that the fetus’s blood flows through two umbilical arteries, then into the capillaries of the villi, and finally back through a single umbilical vein into the fetus. At the same time, the mother’s blood flows from her uterine arteries into large maternal sinuses that surround the villi and then back into the uterine veins of the mother. The total surface area of all the villi of the mature placenta is only a few square meters—many times less than the area of the pulmonary membrane in the lungs. Nevertheless, nutrients and other substances pass through this placental membrane mainly by diffusion in much the same manner that diffusion occurs through the alveolar membranes of the lungs and the capillary membranes elsewhere in the body. The major function of the placenta is to provide for diffusion of foodstuffs and oxygen from the mother’s blood into the fetus’s blood and diffusion of excretory products from the fetus back into the mother. In the early months of pregnancy, the placental membrane is still thick because it is not fully developed. Therefore, its permeability is low. Further, the surface area is small because the placenta has not grown significantly. Therefore, the total diffusion conductance is minuscule at first. Conversely, in later pregnancy, the permeability increases because of thinning of the membrane diffusion layers and because the surface area expands many times over, thus giving the tremendous increase in placental diffusion. Diffusion of Oxygen Through the Placental Membrane. Almost the same principles for diffusion of oxygen through the pulmonary membrane are applicable for diffusion of oxygen through the placental membrane. The dissolved oxygen in the blood of the large maternal sinuses passes into the fetal blood by simple diffusion, driven by an oxygen pressure gradient from the mother’s blood to the fetus’s blood. Near the end of pregnancy, the mean Po2 of the mother’s blood in the placental sinuses is about 50 mm Hg, and the mean Po2 in the fetal blood after it becomes oxygenated in the placenta is about 30 mm Hg. Therefore, the mean pressure gradient for diffusion of oxygen through the placental membrane is about 20 mm Hg One might wonder how it is possible for a fetus to obtain sufficient oxygen when the fetal blood leaving the placenta has a Po2 of only 30 mm Hg. There are three reasons why even this low Po2 is capable of allowing the fetal blood to transport almost as much oxygen to the fetal tissues as is transported by the mother’s blood to her tissues. First, the hemoglobin of the fetus is mainly fetal hemoglobin, a type of hemoglobin synthesized in the fetus before birth. This means that at the low Po2 levels in fetal blood, the fetal hemoglobin can carry 20 to 50 percent more oxygen than maternal hemoglobin can Diffusion of Oxygen Through the Placental Membrane. Second, the hemoglobin concentration of fetal blood is about 50 percent greater than that of the mother; this is an even more important factor in enhancing the amount of oxygen transported to the fetal tissues. Third, the Bohr effect, provides another mechanism to enhance the transport of oxygen by fetal blood. That is, hemoglobin can carry more oxygen at a low Pco2 than it can at a high Pco2 . The fetal blood entering the placenta carries large amounts of carbon dioxide, but much of this carbon dioxide diffuses from the fetal blood into the maternal blood. Loss of the carbon dioxide makes the fetal blood more alkaline, whereas the increased carbon dioxide in the maternal blood makes it more acidic. These changes cause the capacity of fetal blood to combine with oxygen to increase and that of maternal blood to decrease. This forces still more oxygen from the maternal blood, while enhancing oxygen uptake by the fetal blood. Thus, the Bohr shift operates in one direction in the maternal blood and in the other direction in the fetal blood. These two effects make the Bohr shift twice as important here as it is for oxygen exchange in the lungs; therefore, it is called the double Bohr effect. By these three means, the fetus is capable of receiving more than adequate oxygen through the placenta membrane, despite the fact that the fetal blood leaving the placenta has a Po2 of only 30 mm Hg. The total diffusing capacity of the entire placenta for oxygen at term is about 1.2 milliliters of oxygen per minute per millimeter of mercury oxygen pressure difference across the membrane. This compares favorably with that of the lungs of the newborn baby. Diffusion of Carbon Dioxide Through the Placental Membrane. Carbon dioxide is continually formed in the tissues of the fetus in the same way that it is formed in maternal tissues, and the only means for excreting the carbon dioxide from the fetus is through the placenta into the mother’s blood. The Pco2 of the fetal blood is 2 to 3 mm Hg higher than that of the maternal blood. This small pressure gradient for carbon dioxide across the membrane is more than sufficient to allow adequate diffusion of carbon dioxide because the extreme solubility of carbon dioxide in the placental membrane allows carbon dioxide to diffuse about 20 times as rapidly as oxygen. Diffusion of Foodstuffs Through the Placental Membrane. Other metabolic substrates needed by the fetus diffuse into the fetal blood in the same manner as oxygen does. For instance, in the late stages of pregnancy, the fetus often uses as much glucose as the entire body of the mother uses. To provide this much glucose, the trophoblast cells lining the placental villi provide for facilitated diffusion of glucose through the placental membrane. That is, the glucose is transported by carrier molecules in the trophoblast cells of the membrane. Even so, the glucose level in fetal blood is 20 to 30 percent lower than that in maternal blood. Because of the high solubility of fatty acids in cell membranes, these also diffuse from the maternal blood into the fetal blood, but more slowly than glucose, so that glucose is used more easily by the fetus for nutrition. Also, such substances as ketone bodies and potassium, sodium, and chloride ions diffuse with relative ease from the maternal blood into the fetal blood. Excretion of Waste Products Through the Placental Membrane. In the same manner that carbon dioxide diffuses from the fetal blood into the maternal blood, other excretory products formed in the fetus also diffuse through the placental membrane into the maternal blood and are then excreted along with the excretory products of the mother. These include especially the nonprotein nitrogens such as urea, uric acid, and creatinine. The level of urea in fetal blood is only slightly greater than that in maternal blood because urea diffuses through the placental membrane with great ease. However, creatinine, which does not diffuse as easily, has a fetal blood concentration considerably higher than that in the mother’s blood. Therefore, excretion from the fetus depends mainly, if not entirely, on the diffusion gradients across the placental membrane and its permeability. Because there are higher concentrations of the excretory products in the fetal blood than in the maternal blood, there is continual diffusion of these substances from the fetal blood to the maternal blood. Hormonal Factors in Pregnancy Human Chorionic Gonadotropin Causes Persistence of the Corpus Luteum and Prevents Menstruation Menstruation normally occurs in a non pregnant woman about 14 days after ovulation, at which time most of the endometrium of the uterus sloughs away from the uterine wall and is expelled to the exterior. If this should happen after an ovum has implanted, the pregnancy would terminate. However, this is prevented by the secretion of human chorionic gonadotropin by the newly developing embryonic tissues in the following manner. Coincidental with the development of the trophoblast cells from the early fertilized ovum, the hormone human chorionic gonadotropin is secreted by the syncytial trophoblast cells into the fluids of the mother. The secretion of this hormone can first be measured in the blood 8 to 9 days after ovulation, shortly after the blastocyst implants in the endometrium. Then the rate of secretion rises rapidly to reach a maximum at about 10 to 12 weeks of pregnancy and decreases back to a lower value by 16 to 20 weeks. It continues at this elevated level for the remainder of pregnancy. Function of Human Chorionic Gonadotropin. Human chorionic gonadotropin is a glycoprotein having a molecular weight of about 39,000 and much the same molecular structure and function as luteinizing hormone secreted by the pituitary gland. By far, its most important function is to prevent involution of the corpus luteum at the end of the monthly female sexual cycle. Instead, it causes the corpus luteum to secrete even larger quantities of its sex hormones—progesterone and estrogens—for the next few months. These sex hormones prevent menstruation and cause the endometrium to continue to grow and store large amounts of nutrients rather than being shed in the menstruum. As a result, the decidua-like cells that develop in the endometrium during the normal female sexual cycle become actual decidual cells— greatly swollen and nutritious—at about the time that the blastocyst implants. Under the influence of human chorionic gonadotropin, the corpus luteum in the mother’s ovary grows to about twice its initial size by a month or so after pregnancy begins. Its continued secretion of estrogens and progesterone maintains the decidual nature of the uterine endometrium, which is necessary for the early development of the fetus. If the corpus luteum is removed before approximately the seventh week of pregnancy, spontaneous abortion almost always occurs, sometimes even up to the 12th week. Function of Human Chorionic Gonadotropin After that time, the placenta secretes sufficient quantities of progesterone and estrogens to maintain pregnancy for the remainder of the gestation period. The corpus luteum involutes slowly after the 13th to 17th week of gestation. Human chorionic gonadotropin also exerts an interstitial cell–stimulating effect on the testes of the male fetus, resulting in the production of testosterone in male fetuses until the time of birth. This small secretion of testosterone during gestation is what causes the fetus to grow male sex organs instead of female organs. Near the end of pregnancy, the testosterone secreted by the fetal testes also causes the testes to descend into the scrotum. Secretion of Estrogens by the Placenta The placenta, like the corpus luteum, secretes both estrogens and progesterone. Histochemical and physiological studies show that these two hormones, like most other placental hormones, are secreted by the syncytial trophoblast cells of the placenta. Toward the end of pregnancy, the daily production of placental estrogens increases to about 30 times the mother’s normal level of production. However, the secretion of estrogens by the placenta is quite different from secretion by the ovaries. Most important, the estrogens secreted by the placenta are not synthesized de novo from basic substrates in the placenta. Instead, they are formed almost entirely from androgenic steroid compounds, dehydroepiandrosterone and 16-hydroxydehydroepiandrosterone, which are formed both in the mother’s adrenal glands and in the adrenal glands of the fetus. These weak androgens are transported by the blood to the placenta and converted by the trophoblast cells into estradiol, estrone, and estriol. (The cortices of the fetal adrenal glands are extremely large, and about 80 percent consists of a so-called fetal zone, the primary function of which seems to be to secrete dehydroepiandrosterone during pregnancy.) Secretion of Progesterone by the Placenta Progesterone is also essential for a successful pregnancy— in fact, it is just as important as estrogen. In addition to being secreted in moderate quantities by the corpus luteum at the beginning of pregnancy, it is secreted later in tremendous quantities by the placenta, averaging about a 10-fold increase during the course of pregnancy. The special effects of progesterone that are essential for the normal progression of pregnancy are as follows: Progesterone causes decidual cells to develop in the uterine endometrium, and these cells play an important role in the nutrition of the early embryo. Progesterone decreases the contractility of the pregnant uterus, thus preventing uterine contractions from causing spontaneous abortion. Progesterone contributes to the development of the conceptus even before implantation because it specifically increases the secretions of the mother’s fallopian tubes and uterus to provide appropriate nutritive matter for the developing morula (the spherical mass of 16 to 32 blastomeres formed before the blastula) and blastocyst. There is also reason to believe that progesterone affects cell cleavage in the early developing embryo. The progesterone secreted during pregnancy helps the estrogen prepare the mother’s breasts for lactation. Human Chorionic Somatomammotropin A more recently discovered placental hormone is called human chorionic somatomammotropin. It is a protein with a molecular weight of about 22,000, and it begins to be secreted by the placenta at about the fifth week of pregnancy. Secretion of this hormone increases progressively throughout the remainder of pregnancy in direct proportion to the weight of the placenta. Although the functions of chorionic somatomammotropin are uncertain, it is secreted in quantities several times greater than all the other pregnancy hormones combined. It has several possible important effects. First, when administered to several types of lower animals, human chorionic somatomammotropin causes at least partial development of the animal’s breasts and in some instances causes lactation. Because this was the first function of the hormone discovered, it was first named human placental lactogen and was believed to have functions similar to those of prolactin. However, attempts to promote lactation in humans with its use have not been successful. Second, this hormone has weak actions similar to those of growth hormone, causing the formation of protein tissues in the same way that growth hormone does. It also has a chemical structure similar to that of growth hormone, but 100 times as much human chorionic somatomammotropin as growth hormone is required to promote growth. Third, human chorionic somatomammotropin causes decreased insulin sensitivity and decreased utilization of glucose in the mother, thereby making larger quantities of glucose available to the fetus. Because glucose is the major substrate used by the fetus to energize its growth, the possible importance of such a hormonal effect is obvious. Further, the hormone promotes the release of free fatty acids from the fat stores of the mother, thus providing this alternative source of energy for the mother’s metabolism during pregnancy. Therefore, it appears that human chorionic somatomammotropin is a general metabolic hormone that has specific nutritional implications for both the mother and the fetus. Almost all the nonsexual endocrine glands of the mother also react markedly to pregnancy. This results mainly from the increased metabolic load on the mother but also, to some extent, from the effects of placental hormones on the pituitary and other glands. Some of the most notable effects are the following. Pituitary Secretion. The anterior pituitary gland of the mother enlarges at least 50 percent during pregnancy and increases its production of corticotropin, thyrotropin, and prolactin. Conversely, pituitary secretion of follicle-stimulating hormone and luteinizing hormone is almost totally suppressed as a result of the inhibitory effects of estrogens and progesterone from the placenta. Increased Corticosteroid Secretion. The rate of adrenocortical secretion of the glucocorticoids is moderately increased throughout pregnancy. It is possible that these glucocorticoids help mobilize amino acids from the mother’s tissues so that these can be used for synthesis of tissues in the fetus. Pregnant women usually have about a twofold increase in the secretion of aldosterone, reaching a peak at the end of gestation. This, along with the actions of estrogens, causes a tendency for even a normal pregnant woman to reabsorb excess sodium from her renal tubules and, therefore, to retain fluid, occasionally leading to pregnancy-induced hypertension. Increased Thyroid Gland Secretion. The mother’s thyroid gland ordinarily enlarges up to 50 percent during pregnancy and increases its production of thyroxine a corresponding amount. The increased thyroxine production is caused at least partly by a thyrotropic effect of human chorionic gonadotropin secreted by the placenta and by small quantities of a specific thyroid-stimulating hormone, human chorionic thyrotropin, also secreted by the placenta. Increased Parathyroid Gland Secretion. The mother’s parathyroid glands usually enlarge during pregnancy; this is especially true if the mother is on a calcium-deficient diet. Enlargement of these glands causes calcium absorption from the mother’s bones, thereby maintaining normal calcium ion concentration in the mother’s extracellular fluid even while the fetus removes calcium to ossify its own bones. This secretion of parathyroid hormone is even more intensified during lactation after the baby’s birth because the growing baby requires many times more calcium than the fetus does. Secretion of “Relaxin” by the Ovaries and Placenta. Another substance besides the estrogens and progesterone, a hormone called relaxin, is secreted by the corpus luteum of the ovary and by placental tissues. Its secretion is increased by a stimulating effect of human chorionic gonadotropin at the same time that the corpus luteum and the placenta secrete large quantities of estrogens and progesterone. Relaxin is a 48-amino acid polypeptide having a molecular weight of about 9000. This hormone, when injected, causes relaxation of the ligaments of the symphysis pubis in the estrous rat and guinea pig. This effect is weak or possibly even absent in pregnant women. Instead, this role is probably played mainly by the estrogens, which also cause relaxation of the pelvic ligaments. It has also been claimed that relaxin softens the cervix of the pregnant woman at the time of delivery PHYSIOLOGIC CHANGES IN PREGNANCY Most apparent among the many reactions of the mother to the fetus and to the excessive hormones of pregnancy is the increased size of the various sexual organs. For instance, the uterus increases from about 50 grams to 1100 grams, and the breasts approximately double in size. At the same time, the vagina enlarges and the introitus opens more widely. Also, the various hormones can cause marked changes in a pregnant woman’s appearance, sometimes resulting in the development of edema, acne, and masculine or acromegalic features. Weight Gain in the Pregnant Woman The average weight gain during pregnancy is about 12 to 15 kg, with most of this gain occurring during the last two trimesters. Of this, about 4 kg is fetus and 2 kg is amniotic fluid, placenta, and fetal membranes. The uterus increases about 2 kg and the breasts another 1.5 kg, still leaving an average weight increase of 4 to 10 kg. About 3 kg of this is extra fluid in the blood and extracellular fluid, and the remaining 2 to 6 kg is generally fat accumulation. The extra fluid is excreted in the urine during the first few days after birth, that is, after loss of the fluid-retaining hormones from the placenta. During pregnancy, a woman often has a greatly increased desire for food, partly as a result of removal of food substrates from the mother’s blood by the fetus and partly because of hormonal factors. Without appropriate prenatal control of diet, the mother’s weight gain can be as great as 30 kg instead of the usual 12 to 15 kg. Nutrition During Pregnancy By far the greatest growth of the fetus occurs during the last trimester of pregnancy; its weight almost doubles during the last 2 months of pregnancy. Ordinarily, the mother does not absorb sufficient protein, calcium, phosphates, and iron from her diet during the last months of pregnancy to supply these extra needs of the fetus. However, anticipating these extra needs, the mother’s body has already been storing these substances—some in the placenta, but most in the normal storage depots of the …
CATEGORIES
Economics Nursing Applied Sciences Psychology Science Management Computer Science Human Resource Management Accounting Information Systems English Anatomy Operations Management Sociology Literature Education Business & Finance Marketing Engineering Statistics Biology Political Science Reading History Financial markets Philosophy Mathematics Law Criminal Architecture and Design Government Social Science World history Chemistry Humanities Business Finance Writing Programming Telecommunications Engineering Geography Physics Spanish ach e. Embedded Entrepreneurship f. Three Social Entrepreneurship Models g. Social-Founder Identity h. Micros-enterprise Development Outcomes Subset 2. Indigenous Entrepreneurship Approaches (Outside of Canada) a. Indigenous Australian Entrepreneurs Exami Calculus (people influence of  others) processes that you perceived occurs in this specific Institution Select one of the forms of stratification highlighted (focus on inter the intersectionalities  of these three) to reflect and analyze the potential ways these ( American history Pharmacology Ancient history . Also Numerical analysis Environmental science Electrical Engineering Precalculus Physiology Civil Engineering Electronic Engineering ness Horizons Algebra Geology Physical chemistry nt When considering both O lassrooms Civil Probability ions Identify a specific consumer product that you or your family have used for quite some time. This might be a branded smartphone (if you have used several versions over the years) or the court to consider in its deliberations. Locard’s exchange principle argues that during the commission of a crime Chemical Engineering Ecology aragraphs (meaning 25 sentences or more). Your assignment may be more than 5 paragraphs but not less. INSTRUCTIONS:  To access the FNU Online Library for journals and articles you can go the FNU library link here:  https://www.fnu.edu/library/ In order to n that draws upon the theoretical reading to explain and contextualize the design choices. Be sure to directly quote or paraphrase the reading ce to the vaccine. Your campaign must educate and inform the audience on the benefits but also create for safe and open dialogue. A key metric of your campaign will be the direct increase in numbers.  Key outcomes: The approach that you take must be clear Mechanical Engineering Organic chemistry Geometry nment Topic You will need to pick one topic for your project (5 pts) Literature search You will need to perform a literature search for your topic Geophysics you been involved with a company doing a redesign of business processes Communication on Customer Relations. Discuss how two-way communication on social media channels impacts businesses both positively and negatively. Provide any personal examples from your experience od pressure and hypertension via a community-wide intervention that targets the problem across the lifespan (i.e. includes all ages). Develop a community-wide intervention to reduce elevated blood pressure and hypertension in the State of Alabama that in in body of the report Conclusions References (8 References Minimum) *** Words count = 2000 words. *** In-Text Citations and References using Harvard style. *** In Task section I’ve chose (Economic issues in overseas contracting)" Electromagnetism w or quality improvement; it was just all part of good nursing care.  The goal for quality improvement is to monitor patient outcomes using statistics for comparison to standards of care for different diseases e a 1 to 2 slide Microsoft PowerPoint presentation on the different models of case management.  Include speaker notes... .....Describe three different models of case management. visual representations of information. They can include numbers SSAY ame workbook for all 3 milestones. You do not need to download a new copy for Milestones 2 or 3. When you submit Milestone 3 pages): Provide a description of an existing intervention in Canada making the appropriate buying decisions in an ethical and professional manner. Topic: Purchasing and Technology You read about blockchain ledger technology. Now do some additional research out on the Internet and share your URL with the rest of the class be aware of which features their competitors are opting to include so the product development teams can design similar or enhanced features to attract more of the market. The more unique low (The Top Health Industry Trends to Watch in 2015) to assist you with this discussion.         https://youtu.be/fRym_jyuBc0 Next year the $2.8 trillion U.S. healthcare industry will   finally begin to look and feel more like the rest of the business wo evidence-based primary care curriculum. Throughout your nurse practitioner program Vignette Understanding Gender Fluidity Providing Inclusive Quality Care Affirming Clinical Encounters Conclusion References Nurse Practitioner Knowledge Mechanics and word limit is unit as a guide only. The assessment may be re-attempted on two further occasions (maximum three attempts in total). All assessments must be resubmitted 3 days within receiving your unsatisfactory grade. You must clearly indicate “Re-su Trigonometry Article writing Other 5. June 29 After the components sending to the manufacturing house 1. In 1972 the Furman v. Georgia case resulted in a decision that would put action into motion. Furman was originally sentenced to death because of a murder he committed in Georgia but the court debated whether or not this was a violation of his 8th amend One of the first conflicts that would need to be investigated would be whether the human service professional followed the responsibility to client ethical standard.  While developing a relationship with client it is important to clarify that if danger or Ethical behavior is a critical topic in the workplace because the impact of it can make or break a business No matter which type of health care organization With a direct sale During the pandemic Computers are being used to monitor the spread of outbreaks in different areas of the world and with this record 3. Furman v. Georgia is a U.S Supreme Court case that resolves around the Eighth Amendments ban on cruel and unsual punishment in death penalty cases. The Furman v. Georgia case was based on Furman being convicted of murder in Georgia. Furman was caught i One major ethical conflict that may arise in my investigation is the Responsibility to Client in both Standard 3 and Standard 4 of the Ethical Standards for Human Service Professionals (2015).  Making sure we do not disclose information without consent ev 4. Identify two examples of real world problems that you have observed in your personal Summary & Evaluation: Reference & 188. Academic Search Ultimate Ethics We can mention at least one example of how the violation of ethical standards can be prevented. Many organizations promote ethical self-regulation by creating moral codes to help direct their business activities *DDB is used for the first three years For example The inbound logistics for William Instrument refer to purchase components from various electronic firms. During the purchase process William need to consider the quality and price of the components. In this case 4. A U.S. Supreme Court case known as Furman v. Georgia (1972) is a landmark case that involved Eighth Amendment’s ban of unusual and cruel punishment in death penalty cases (Furman v. Georgia (1972) With covid coming into place In my opinion with Not necessarily all home buyers are the same! When you choose to work with we buy ugly houses Baltimore & nationwide USA The ability to view ourselves from an unbiased perspective allows us to critically assess our personal strengths and weaknesses. This is an important step in the process of finding the right resources for our personal learning style. Ego and pride can be · By Day 1 of this week While you must form your answers to the questions below from our assigned reading material CliftonLarsonAllen LLP (2013) 5 The family dynamic is awkward at first since the most outgoing and straight forward person in the family in Linda Urien The most important benefit of my statistical analysis would be the accuracy with which I interpret the data. The greatest obstacle From a similar but larger point of view 4 In order to get the entire family to come back for another session I would suggest coming in on a day the restaurant is not open When seeking to identify a patient’s health condition After viewing the you tube videos on prayer Your paper must be at least two pages in length (not counting the title and reference pages) The word assimilate is negative to me. I believe everyone should learn about a country that they are going to live in. It doesnt mean that they have to believe that everything in America is better than where they came from. It means that they care enough Data collection Single Subject Chris is a social worker in a geriatric case management program located in a midsize Northeastern town. She has an MSW and is part of a team of case managers that likes to continuously improve on its practice. The team is currently using an I would start off with Linda on repeating her options for the child and going over what she is feeling with each option.  I would want to find out what she is afraid of.  I would avoid asking her any “why” questions because I want her to be in the here an Summarize the advantages and disadvantages of using an Internet site as means of collecting data for psychological research (Comp 2.1) 25.0\% Summarization of the advantages and disadvantages of using an Internet site as means of collecting data for psych Identify the type of research used in a chosen study Compose a 1 Optics effect relationship becomes more difficult—as the researcher cannot enact total control of another person even in an experimental environment. Social workers serve clients in highly complex real-world environments. Clients often implement recommended inte I think knowing more about you will allow you to be able to choose the right resources Be 4 pages in length soft MB-920 dumps review and documentation and high-quality listing pdf MB-920 braindumps also recommended and approved by Microsoft experts. The practical test g One thing you will need to do in college is learn how to find and use references. References support your ideas. College-level work must be supported by research. You are expected to do that for this paper. You will research Elaborate on any potential confounds or ethical concerns while participating in the psychological study 20.0\% Elaboration on any potential confounds or ethical concerns while participating in the psychological study is missing. Elaboration on any potenti 3 The first thing I would do in the family’s first session is develop a genogram of the family to get an idea of all the individuals who play a major role in Linda’s life. After establishing where each member is in relation to the family A Health in All Policies approach Note: The requirements outlined below correspond to the grading criteria in the scoring guide. At a minimum Chen Read Connecting Communities and Complexity: A Case Study in Creating the Conditions for Transformational Change Read Reflections on Cultural Humility Read A Basic Guide to ABCD Community Organizing Use the bolded black section and sub-section titles below to organize your paper. For each section Losinski forwarded the article on a priority basis to Mary Scott Losinksi wanted details on use of the ED at CGH. He asked the administrative resident